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Abstract

As e-commerce has grown, so has the problem of fraud and spam. One type of spam (which
is also fraud) is fake reviews or opinion spam. They essentially are covert marketing, to
persuade readers of the worth (or lack thereof) of a product or service. The number of
reviews is now so large that only automation can efficiently address classifying them. This
research investigated how effective ensembles for classifying reviews as fake or authentic
might be created or improved.

Both feature level data fusion (combinations of feature sets based on different ways
of analyzing the text) and decision level data fusion (customized hybrid ensembles) were
investigated, as well as ensemble methods. A thorough process first experimented with
individual feature sets and several classifiers (individually) to establish performance baselines.
Then complexity was methodically increased using these techniques: ensemble methods,
combined feature sets with a single classifier, and ensemble methods with those models.

Feature level data fusion resulted in a slight improvement in accuracy, but ensemble meth-
ods generally did not. Hybrid ensembles using a majority voting rule were then investigated.
Ensemblement of heterogenous classifiers that use different feature sets (combined or not)
increased accuracy noticeably, beyond the average of the individual classifiers. However, as
classifiers became more complex (in terms of the feature set used), the number of poten-
tially useful classifiers and their diversity became overriding issues and prevented a thorough
examination of all possible ensembles.

To overcome this, sampling schemes were developed. These schemes investigated how
ordering the pool of classifiers based on formulas using accuracy and pairwise diversity might
reveal the better ensembles. But the classifier pool’s size was still an issue. In a preliminary
investigation into winnowing the pool, the idea of diversity and similarity vectors arose. A
diversity vector is a vector of the pairwise diversity measures between one classifier and
others. Similarity vectors are created by using a distance function such as cosine similarity to
compare the diversity vectors of classifiers. Thus similarity vectors are a way of seeing what
classifiers in a set can be grouped together based on their intra-diversity (or lack thereof).
These two ideas show promise in better understanding the internal dynamics of ensembles,
how classifier accuracy and diversity impact ensemble diversity, and how the ensemble
creation process might be optimized.
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Chapter 1

Introduction
"Listing is all screwed up" - "The thumbnail is a shirt. The product shown is a
shoe. The description is a book. This reviewer is confused."

— Helene (from Amazon.com)

1.1 Online Reviews: Electronic Marketing

As the Internet has grown, humanity’s ability to communicate has become more efficient,

effective, and complex. E-commerce and marketing are significant parts of this increase in

communication; businesses now have the ability to serve a larger, even global, customer base

without most of the effort required twenty or thirty years ago. This is especially true for

businesses in the consumer related sectors. The growth and reach of online retailers such

as Amazon and Alibaba are a testament to the economic and social impact of e-commerce.

Customers can search for products and services just by hitting the Enter key. But the

fundamentals of commerce have not changed; for example, there are still sellers and buyers,

satisfied and unhappy customers, product related issues, and fraud. The Internet is merely

the new medium currently facilitating commercial processes.

One of these processes is Word Of Mouth (WOM) marketing. People’s social behaviors

include telling others of what they’ve bought, their satisfaction with a service or product, or

their advice and recommendations. In marketing, this sharing of knowledge online is known

as “electronicWOM”.Message boards, chat rooms, and e-mail lists are all socialmedia spaces

where this happens, but the most prominent is websites that support online reviews. Online

review spaces support a variety of functions for the parties involved: customers, potential

customers, and the merchants (King et al., 2014). For customers, the ability to praise or

complain about the product, the merchant, or the service fulfills various psychological needs.

Potential customers can evaluate the item or service based on others’ evaluations. As for

merchants, online reviews serve as ways to cheaply get customer feedback and to get free

marketing from satisfied customers. Online reviews also increase the perceived credibility

1
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of a merchant and its products. A merchant that prevents customers from reviewing its

products is one to be avoided. Without reviews, a potential customer has nothing but price

and assumptions to go by; they can not evaluate a physical good to be bought over the Internet

nor can they get detailed experiential information on service providers like hotels. So online

reviews are an important aspect of the trillion dollar e-commerce economy.

1.2 The Problem Of Fake Reviews

However, as with all human endeavors, there is a down side to online review spaces: fake

reviews (also known as “review spam”, “opinion spam”, or “shill reviews”). The field of

marketing has a long history of deception and fraud, notably the “snake-oil” salesmen in the

late 1800s in America. Fake reviews are the 21st century version, written for the purpose of

influencing potential customers, i.e., positive marketing to increase the perceived reputation

of the product or merchant. Alternatively, fake negative reviews are left by competitors to

disrupt sales (Segal, 2011). An analogous version of fake reviews in the real world would

be person to person stealth marketing campaigns. These campaigns typically involve actors,

pretending to not be marketers, who interact with potential customers in social settings. At

some point in the interaction, the product being marketed becomes a topic of discussion.

The term “covert marketing” is perhaps a better umbrella term for these types of marketing

strategies as it references the disingenuousness involved.

The growing importance and pervasiveness of social networking, along with the 24 by 7

nature of the Internet, has only made the problem of online covert marketing worse because

now the attention of potential customers must be fought for constantly. And merchants,

especially on aggregation sites such as Amazon or TripAdvisor, have a greater number of

competitors to deal with. For these reasons, fake reviews have become prevalent. This

problem has grown to the point where now even a separate industry dedicated to generating

fake reviews exists, with groups of writers coordinating their efforts in writing fake reviews.

A related effort is “paid-for” reviews where the reviewer actually does receive the object

reviewed (free or for a discount), but it is illogical to assume they will always be objective

(Morran, 2016; ReviewMeta, 2016a,b).

The need to filter fake reviews for sites like Amazon is obvious. But even third party

sites such as TripAdvisor are affected by fake reviews as their business models are based

upon being a trusted source for information about an industry. The economic fallout from

fake reviews is not trivial. The cost has been estimated to be in the hundreds of millions
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of dollars, which is understandable given the economic benefits of favorable reviews and

the reputation economy in general. Fake or biased reviews are a serious enough problem

that businesses have sued consumers and Yelp for bad reviews (Severance, 2016) and in

turn, Amazon has sued the sources of fake reviews (Northrup, 2016). Government agencies

have also acted to protect consumers (Gara, 2013). Given these economic hazards, and the

billions in e-commerce revenue, developing effective ways for filtering out review spam is as

paramount as it is for deterring e-mail and Web spam.

1.3 Existing Approaches

Beside legal approaches, another way to reduce the impact of fake reviews is to educate

consumers on how to spot such reviews. There have been numerous articles published

about the problem trying to raise consumer awareness (Popken, 2010; Ballenger, 2011).

The heuristics recommended are common sense types ones such as ignoring excessively

positive reviews or ones filled with marketing hype. But these heuristics are not sufficient

because of several issues. One, the consumer must first be aware of them and how prevalent

covert marketing is amongst online reviews (Bambauer-Sachse and Mangold, 2013). The

psychological phenomenon known as the Truth Bias impedes this; it makes people want to

believe what they read, see, or hear to be true. Otherwise, it is cognitively exhausting and time

consuming to constantly be evaluating the veracity of new information. Second, it is much

harder to evaluate the credibility of an online review; studies have shown humans to be fairly

inept. An important factor is the absence of associated information, e.g., about the writer, so

the text is the only source of information and what the reader might infer from it based on

their own knowledge, judgements, or projections. Another factor is the quality of the writing

in the review; the heuristics mentioned are sufficient for detecting badly written fake reviews

which predominated in the early days. But now that opinion spam is an important aspect

of the reputation economy and is so lucrative, professionally written spam that avoids being

blatantly obvious is more the norm and so these easily bypassed heuristics are not sufficient.

To address the problem, Amazon, TripAdvisor, Yelp, and others have implemented a

variety of strategies which can be summarized into three groups: “verifiable actions”, “social

relationships”, and “location information” (Ma and Li, 2012). The first involves verification

processes to ensure the reviewer actually did purchase the product or service. But Amazon

recently discontinued its Verified Purchaser program and has banned incentivized reviews

because abuse by review clubs was becoming evident (ReviewMeta, 2016a). The second
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method involves adding social networking features and to allow only members to submit

reviews. The theory is spammers are less likely to put forth the effort to create and update

realistic but fake profiles. Participation in the online community also serves as a signal the

reviewer is more likely to be authentic (Kamerer, 2014). But this does not prevent competitors

or authentic (but hostile) reviewers from submitting biased reviews as the lawsuits of affected

businesses against Yelp attest. Finally, geolocation and geotagging involving mobile phones

can verify a reviewer was at a business or lives in the area (based on their profile). But the

number of reviews submitted through mobile phones is low and profile information can be

faked. So it seems there are no fail safe solutions based on engineering of the review process

and leveraging human related factors.

What is left are technological solutions, and given the ever-increasing amount of review

data on the Internet, automation is essential. Classification of reviews akin to email spam

filtering using machine learning has been shown to be a promising approach as evidenced

by the studies reviewed in Chapter 2. The field of linguistics and specifically computational

linguistics have served as sources of ideas on how to process the text. However, filtering

review spam, based only on the text, is a harder one than for e-mail spam. This is because of the

natural language processing (NLP) aspect; review spam is as syntactically and semantically

valid as an authentic review. The growing professionalism of spam reviewers is also a factor

making it harder to detect review spam; near-duplicate reviews and excessive sentiment are

no longer common indicators of spam. For these reasons, behavioral and metadata based

features have been shown to bemore predictive, in of themselves, than text only based features

(Mukherjee et al., 2013b). Non-text features such as metadata (e.g., the IP address) are harder

to mask or manipulate. Some examples would be statistical aberrations in the ratings, patterns

in how reviewers post their reviews, and even detection of coordinated behaviors amongst a

group of reviewers. But text and non-text based features are of course complementary and

an industrial solution should use a variety of techniques based on the available raw data.

1.4 Aims and Objectives

To date, most of the research into classifying fake reviews has focused on feature engineering

(Crawford et al., 2015). This paper builds upon those studies, investigating how an effective

and accurate ensemble might be created using those features. Both feature level data fusion

and decision level data fusion were examined along with how ensemble methods improved

classifier performance. The overall intent was to construct a more holistic view of the text
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using these NLP based features; ideally, different types of features would reinforce each other

and improve classification accuracy.

The primary objectives of this study were the following:

1. Develop classifiers that use sets of features evaluated in other studies - ones based on

different aspects of the text

2. Investigate how combining feature sets (feature level data fusion) improves performance

3. Evaluate how ensemble methods improve classifier performance

4. Develop hybrid ensembles (decision level combination of the classifiers from previous

objectives) and evaluate their performance

Secondary objectives were the following:

1. Evaluate a novel set of features based on the emotional tone of the text and an analysis

of the writer’s presumed personality

2. Evaluate different schemes for efficiently creating an effective hybrid ensemble



Chapter 2

Related Work

2.1 Overview

This chapter is a summary of the studies used as inspiration for this research. First, the

foundation of the field of fake review classification is discussed along with an overview of

the whole field. This is followed by a review of the papers used as sources of ideas for feature

engineering and the extent of the studies of ensembles for review classification.

2.2 Background Information

Jindal and Liu (2007, 2008) is the foundation of the review spam field. Dividing the types

of spam found in online review sites into three categories, they show Types II (brand focused

opinions) and III (non-reviews) are very amenable to being classified (an Area Under the

Curve (AUC) score of over 98%). However, Type I is a harder problem as the text constitutes

an actual review, albeit an inauthentic one; subsequent research has focused primarily upon

this type. Using a set of straightforward features created from the review metadata, reviewer

information, and product information, Logistic Regression (LR) classifiers achieved an AUC

of 78%. This may seem low, but their methodology and results are a good baseline for

comparison given that real world data from Amazon was used and the review text was only

superficially analyzed. Another important part of the paper is that they describe their findings

on near-duplicate and duplicated reviews as well as other aspects of reviews.

Subsequent research has examined the problem from many different angles. The ma-

jority of studies can be grouped into the following rough categories: text based feature

engineering, non-text based features, and detection of collaborating spammers (spamming

groups). Another significant area of research has involved investigating different methods

such as positive-unlabeled learning to address the class imbalance problem (only 2% to 6%

of reviews in the real world are estimated to be fake (Lau et al., 2010; Ott et al., 2012)). The

6
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most recent research has started to focus on topics such as ensembles and the practical aspects

of building a classification system, e.g., using Hadoop. So a thorough review of the entire

field is out of scope for this paper (see Heydari et al. (2015); Crawford et al. (2015)). Instead,

the focus is on the research that investigates text oriented features and ensembles which are

discussed in subsequent sections.

2.3 Text Based Features

Text has a number of different aspects: structural (e.g., sentence length), syntactical (gram-

mar), lexical (word choice), and semantic (meaning). All are possible sources of machine

learning features, with the first two falling under the field of stylometry. The following

subsections discuss the studies that have used these types of features.

2.3.1 Stylometry

There is no one specific set of features, e.g., parts of speech (POS), that are deemed as

canonical for stylometric analysis and an exhaustive list would be out of scope. No consensus

has been formed on what could be essential because an important factor is the particular

medium, e.g., textual analysis of historical documents would surely rely on different features

than a stylometric analysis of Twitter based communication.

For reviews, the tenets of deception theory were an initial source of stylometric type

features; an example would be deceptive communication involves the use of longer sentences,

but less of a diverse vocabulary or complexity of the sentences or the overall communication.

If one is trying to mislead another person, keeping communication simple, easily understood,

and superficially persuasive is logical. Burgoon et al. (2003) is an early study that used a

variety of simple text based measures as features to evaluate the level of deceptiveness within

text. Their results show a decision tree could classify the text of an interaction to determine

which individual was the truth teller and which was not.

But it should be noted they studied interpersonal synchronous communication while

online reviews are a form of asynchronous one way communication. This difference is the

cause of some ostensibly contradictory results such as whether longer texts are more likely to

be truthful versus not; the nuances of interpersonal deception theory and the characteristics

of the communication are crucial factors in this regard. The unexpected results of Yoo and

Gretzel (2009) are one example of this contradiction. They also use deception theory as

a theoretical basis for creating stylometric type features. In the results, some hypothesis
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were 100% wrong with regard to fake reviews, e.g., fake reviews were more complex and

had more self-references contrary to what traditional deception theory posits. Exactly how

deception theory needs to be modified to account for variables such as synchronous versus

asynchronous communication or the medium of communication (verbal versus text) is still

being explored by researchers.

Other studies that use stylometric feature sets are Ramyaa and Rasheed (2004) and Zheng

et al. (2006) which focus on authorship attribution. Results were variable, based on the

training, data sets, and specific features used, but both achieved accuracies up into the 80%

range. Authorship attribution may be a different problem than that of classifying reviews

written by unknown authors, but the hypothesis that fake reviewers might have a detectably

different style is a logical one, given Burgoon et al. (2003). Consequently, many studies have

used features also found in research into authorship attribution. A notable example would be

Shojaee et al. (2013) which uses up to 234 basic features divided into two sets (lexical and

syntactic). Using the combined sets resulted in a classification accuracy of 84%. Finally,

Shrestha et al. (2016) is an interesting study that explicitly combines authorship attribution

with fake review detection to detect the reviewswritten by one author undermultiple accounts;

the inherent duplicity is a strong signal of inauthenticity.

More complex features like the grammatical structure of the sentences have also been used;

Feng et al. (2012) achieved an accuracy of 91% when combining a bag-of-words approach

with the grammatical analysis (constituency parsing). However, adding the grammatical

analysis based features only improved results 2% above the baseline. Xu and Zhao (2012)

use POS, POS bigrams, and dependency parsing of the sentences amongst the combined sets

of features. But the cost/benefit ratio, given the complexity of parsing text and the resulting

size of the entire feature set, is perhaps not worth the small increase in accuracy given the

results of these two studies.

2.3.2 Lexical Analysis

Another source of features used in many studies is the Linguistic Inquiry and Word Count

(LIWC) text analysis tool (Pennebaker et al., 2001). It is a way of categorizing words into

several of 80 categories along various dimensions: parts of speech, psychological processes,

time and causality relatedwords, and conceptual abstractions or base concepts (e.g. sex, death,

illness). Ott et al. (2011, 2013) both use the LIWC categories in different combinations with

POS features, unigrams, bigrams, or trigrams, along with Naive Bayes and SVM classifiers.

The dataset was claimed to be ’gold-standard’ as Amazon Mechanical Turk was used as a



9

source of known fake reviews along with reviews from TripAdvisor and Hotel.com assumed

to be authentic ones. The reported accuracies all range from 87% to 89%. Ott et al. (2013)

also found that the review sentiment is a factor as there are important differences between

fake negative and fake positive reviews that impact the performance of a classifier trying to

classify just “fake" versus “authentic".

But as Mukherjee et al. (2013a,b) show, the Ott dataset can not be regarded as gold-

standard because of linguistic differences between it and a set of real-world reviews. Using

the Kullback-Leibler and Jensen-Shannon divergence measures of the word distribution,

Mukherjee et al show the real-world set has a smaller difference in the word distribution for

fake and authentic reviews compared to the Ott dataset. This results in the Ott dataset being

much easier to classify, especially considering n-grams were used as features; Mukherjee et

al.’s results for classifying real world reviews in the same manner as in Ott’s studies achieved

an accuracy of only 68%. Li et al. (2014) is a follow-on to Ott et al. (2013) that uses an

enhanced version of the Ott dataset, addingmore reviews for different domains than just hotels

as well as deceptive reviews written by employees and truthful ones written by customers.

This new dataset and collection process address some fundamental issues with the first set,

but their analysis is complicated by mixing multiple domains and different data collection

processes which impact the generation of the review text. But one important result is that

they show LIWC and POS based features are robust across review domains; however, using

unigram features still results in a slighter higher accuracy.

2.3.3 Readability

A third way of characterizing text that combines structural properties and lexical ones (in

a sense) involves readability formulas. Common variables in readability formulas are the

length of sentences or the number of syllables in a word. Ong et al. (2014) is one example that

uses five of the most common formulas to calculate the readability of product reviews (along

with other measures). Their results show there is a statistically significant difference between

fake and authentic reviews even though the difference in grade levels that the formulas purport

to measure is typically less than 1. In a practical sense, as it applies to humans, it is not

significant, but the conclusion is readability can be a useful feature.

Two studies that do use readability formulas as features are Banerjee and Chua (2014a)

and Banerjee and Chua (2014b). Based on these papers, it obviously is one study and two

different views of the results that examine slightly different things. Interestingly, there seems

to be a conflict between them. Banerjee and Chua (2014b) state, based on the results, that
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“manipulative reviews were generally less readable than authentic reviews”. This matches

the results of Ong et al. (2014) along with the slight difference in grade level. However,

Banerjee and Chua (2014a) state “genuine reviews were more difficult to be read compared

to deceptive reviews”. The reason for this apparent conflict lies in how the latter study uses

the readability measures to calculate text ‘complexity’ and ‘reading difficulty’. The basis for

their derivation of these two measures is suspect and the root cause lies in another study,

along with the imprecision of the English language. The other studies surveyed that have

used readability as a straightforward measure, and not derived other features from it, show

results in line with Banerjee and Chua (2014b); this study did not derive anything from the

readability measures.

2.3.4 Semantic Analysis

The term ‘semantic’ is a very general one; for these purposes, it denotes more abstract

properties of a text that are based on the function and nature of the exact words an author

uses. The emotions an author is trying to express, i.e., the sentiment, is one such property

and so has been used as a possible marker of inauthenticity in consumer level heuristics. One

example would be that excessively positive reviews are more likely to be fake. Sentiment

analysis is a large field; most studies have focused on investigating and improving techniques

for determining the sentiment within a review (typically movie ones). But a few studies

have examined the relationship between authenticity and sentiment. Jensen et al. (2013)

validate the consumer level heuristics mentioned in the Introduction, showing that the affect

intensity (level of sentiment, not just polarity) and even-handeness of a review impact the

human assessed credibility of a review. Peng and Zhong (2014) and Chen et al. (2014)

both use sentiment in different ways to classify restaurant and store reviews, respectively.

Using different methods, they achieve results in the mid-70% and mid-80% accuracy ranges.

Feldman (2013) is a good overview of the sentiment analysis field that served as a source of

ideas, specifically the need to examine not just the overall review sentiment, but sentence and

word level as well.

As for more abstract features, a novel one is the perceived personality of the writer.

Initially this may seem of little use, but if fake reviews are a form of covert marketing, then

the impression left by the text on the reader, as desired by the writer, is an important factor.

Therefore one aim of a fake reviewer is to write a credible review. Credibility is composed

of several components: authoritativeness, expertise, and trustworthiness (Fogg and Tseng,

1999). Such qualities would be more easily inferred from text if the writer is seen as open,
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conscientious, and not neurotic which are part of the Big 5 personality model (OCEAN,

which stands for Openness, Conscientiousness, Extraversion, Agreeableness, Neuroticism)

(Goldberg, 1990). Mairesse et al. (2007) is an early study that investigates how the OCEAN

characteristics can be assessed through different types of analyses of written text. Results

were generally modest, but there was a correlation between the personality measures, the

text, and the writer’s personality as evaluated through other means.

Koven et al. (2014) and Christopher and Rahulnath (2016) are two recent studies that

specifically examine classifying reviews using personality measures as features. The former

achieved an accuracy of 79% using extraversion, conscientiousness, and openness to expe-

rience within their feature set. The latter study, however, had an unorthodox methodology.

Reviews were first classified as fake or authentic with a standard procedure utilizing features

used in other studies. Then the fake reviews were evaluated along each of the OCEAN char-

acteristics. Openness, extroversion, and low levels of neuroticism were strongly associated

with the fake reviews. But there was no comparison to personality characteristics or levels

of them for authentic reviews which would have been useful.

2.4 Ensembles

Finally, as the two literature review surveys mentioned indicate, there has not been much

research to date into the use of ensembles for classifying fake reviews. Banerjee et al. (2015)

is one that combines 9 different classifiers into a voting scheme as well as evaluating each

classifier’s performance in isolation. This voting ensemble achieved the highest AUC of 81%

in classifying a set of real world hotel reviews. But little else is mentioned of this ensemble

except that the default parameters in WEKA were used. The features used (for all classifiers)

were a combination of stylometric, readability measures, POS, and lexical ones.

Heredia et al. (2016) is a more thorough investigation that looks at ensembling just

bag-of-words features using four base classifiers (C4.5 Decision Trees, SVM, Logistic Re-

gression, and Multinomial Naive Bayes) and three ensemble methods (Bagging, AdaBoost,

and Random Forest). The ensemble methods were somewhat productive; for the SVM and

Logistic Regression classifiers, the AUC improved 2 to 3%. The Decision Tree classifiers

improved greatly (over 10%), but ensembling the Multinomial Naive Bayes classifier resulted

in little improvement. As it by itself was already the best classifier in terms of performance,

Heredia et al reasonably conclude there is little advantage to using ensemble methods given

the requisite amount of effort and increased time for training. But the exact set of features
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used is a factor, how a classifier responds to them, and the dataset itself is an enhancement

of the original Ott dataset whose specific statistical properties are surely something else to

consider.

The Ott dataset is also used in Ahsan et al. (2016) along with a set of 2000 unlabeled

reviews from Yelp. The interesting aspect of this study is the combination of active learning

(to first separate the Yelp reviews into likely spam and not spam based on their cosine

similarities) and then merging this with the Ott dataset. The resulting hybrid data is used to

train and test several classifiers and a voting scheme determines the final class label. The

accuracy of 88% is impressive, but again the features are n-grams which, just like in Ott’s

original set of studies and so many others, tend to result in accuracy scores around 90%.

Heavily relying upon word choice makes the classification system dependent upon several

factors, impacting the development of a review classification system that can handle a wide

range of different types of reviews. The reviews used in the training set would be the most

obvious factor. Another is the type of good (search or experience) being reviewed; the

vocabulary and distribution of it surely would be different based on the good, e.g., hotel

reviews focus on different things than reviews of computer products. It is for these reasons

this study investigated how more generalized or abstract features such as readability could

be used in place of ones based on the specific vocabulary. Determining the utility of these

features could alleviate the need to have multiple classifiers or ensembles that are focused on

only specific review topics.



Chapter 3

Research Methodology

3.1 Overview

This chapter presents the methodology designed for this study after identifying and justifying

more specific questions that need to be addressed to achieve the aim and objectives of this

research. The phases of the research process are then described in detail. Finally, a list of the

tools and datasets used for this study is provided alongwith links to relevant papers andURLs.

The following, provided for clarity, is a list of the basic concepts or variables examined in

this research and the relevant terminology used.

1. Individual Feature: a specific measure created by processing the review text using a

NLP based technique or approach

2. Feature Set: a collection of individual features which are conceptually related

3. Combined Feature Set: an agglomeration of multiple feature sets into one

4. Ensemble Method: the classic methods, such as bagging or AdaBoost, used to create

an ensemble from one base classifier and varying the training data

5. Ensemblement: the generic approach of selecting heterogeneous classifiers out of a

pool and combining their decisions with a rule

3.2 Research Questions

There has been only a limited amount of research into using ensemble methods for classifying

fake reviews based on the literature review. These studies (Ahsan et al., 2016; Heredia et al.,

2016) ensemble only a single base classifier and use a single feature set. As for an ensemble

of multiple classifiers, only one study (Banerjee et al., 2015) uses decision level data fusion

13
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and a voting scheme and also only a single feature set across all the classifiers. Given these

facts, the obvious first questions that arise are “Do ensemble methods add any value when

using other feature sets? Would using multiple distinct feature sets, in a decision level data

fusion scheme, improve performance?"

But using multiple distinct feature sets is not that same as feature level data fusion. Using

multiple distinct feature sets is meant to imply different feature sets are given to different

classifiers akin to a Mixture of Experts type design. Feature level data fusion, however,

consists of merging two or more feature sets into one which is then provided to a single

classifier. Many studies in Chapter 2 investigate feature set level fusion as part of their

research into feature engineering. But the number of feature sets used is typically small (up

to four) and are dominated by lexical analysis and n-gram type features. Secondary questions

therefore were “What feature sets already researched are useful? What has not been combined

with other sets?" After refinement, the main questions to be addressed were assembled into

the following list. They were ordered so that the answer to one provides insight into the

following ones.

1. Using a single base classifier, what is their baseline performance when using each

individual feature set?

2. Do ensemble methods, with these individual classifiers and individual feature sets (in

isolation), improve performance?

3. Does feature level data fusion (combining multiple feature sets into one) improve

performance when using a single classifier?

4. Do ensemble methods, with the models used in the previous question, improve perfor-

mance?

5. How does performance improve using a custom ensemblement procedure and using

the best models from previous stages?

In the process of examining Question 5, a sixth major question arose which was relevant

to investigating how to, given time limits and the scale of the problem, efficiently sample the

entire set of possible ensemble compositions when using a large pool of individual classifiers:

6. How can individual classifier accuracy and pairwise diversity measures be utilized in

finding ensembles with the highest possible accuracy?
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The exactmethodology used, summarized in Figure 3.1, addresses these questions through

a series of phases which build upon each other. These phases can be seen in the expanded

steps. Two studies (Alyahyan and Wang (2017) and Xia et al. (2011)) were used as a model

or a source of ideas for this research. Alyahyan and Wang (2017) investigate how feature

level data fusion can be combined with decision level data fusion to classify multimedia

datasets. Investigating how diversity measures and model accuracy can be used to im-

prove the ensembles is an important focus. Similarly, Xia et al. (2011) investigate how two

distinct feature sets, with three base classifiers and different combination rules, can be used

to improve the classification of sentiment in 5 different datasets of product andmovie reviews.

Figure 3.1: Methodology Overview

3.3 Data Collection and Pre-processing

The literature review resulted in a surfeit of possible sources of data as many studies have

been done on the problem of classifying reviews. The majority were available on the Internet

or on request from the paper’s authors. Therefore a decision was made to not create a custom

dataset through web scraping or other means. It would have been a time sink and unnecessary,

given the intended focus of this project. A dataset used in other studies is a validated one and

is better understood in some sense as well as an already cleaned one. Additionally, the other

studies that used the set could be a source of ideas in the process of analyzing results.
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The dataset chosen comes from Ott et al. (2011, 2013), i.e., the “Ott dataset”. The

rationale was that it has been used in many studies (being one of the first collated) and it is

a labeled set. The 800 reviews labeled as authentic were gathered from a variety of websites

such as Yelp and TripAdvisor. The source of the 800 reviews labeled as fake was Amazon

Mechanical Turk where the researchers paid random people to write reviews of hotels they

presumably had not been to. A notable aspect of this dataset is that both positive and negative

authentic and fake reviews have been collated, so there are actually 4 labeled classes even

though only 2 (fake and authentic) are the ones focused on for the purposes of filtering review

spam. The polarity was treated as a binary feature; in the investigation of feature selection,

it was included in some subsets as well as with all other individual features (or not). The

text files were processed and the data put into a MySQL database per standard software

engineering practices because a database built on text files is not efficient.

3.4 Feature Engineering and Data Analysis

The most common techniques or approaches to analyzing the text to create features are n-

grams, bag-of-words, and TF-IDF. A large majority of the studies found in the literature

review used n-grams or bag-of-words when analyzing the Ott dataset as the original study

used this approach. Its performance serves as a baseline for evaluating the usefulness of other

types of features investigated, especially when combined with the different n-grams feature

sets. But there has never been an investigation into the utility of combining all these different

feature sets together in some fashion while not using n-grams. Relying upon just n-grams for

classifying real world reviews, as Mukherjee et al. (2013a) show, is not a viable approach.

Therefore, n-grams should be considered as just one possible technique for deriving features

instead of the primary one.

Thus this study investigated features derived using a variety of other linguistically oriented

techniques. These consisted of readability measures, stylometry, sentiment analysis, lexical

analysis, and shallow syntactical analysis. A novel approach, that of tonal analysis and

inferences about the writer’s personality, was also used. Chapter 4 contains more details on

these topics and exactly how individual features were derived. Other possible approaches

were considered (constituency parsing to examine sentence structure and linguistic frames).

But due to their complexity, they were left for a further study.

Once the reviews were processed and the features derived for each feature set, histograms

of them were generated along with density functions. Correlation diagrams of the features
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within a feature set were also generated. This was done to get an initial understanding of the

data, the distribution of the values, and to see if there were any unusual patterns or features

that obviously might be of use or not. For the features with integer values, such as the count

of the number of sentences within a review, bar charts were also generated.

3.5 Use of Individual Feature Sets

3.5.1 Individual Classifiers

Once the reviews were analyzed and features created, custom software was written to train

models and generate statistics and graphs of the classification results. These scripts were

based upon the scikit-learn library; scikit-plot was used to generate basic diagrams such as

a graphical version of the confusion matrix and AUC curves. Each script read a collection

of related features (a feature set) from the database in isolation; this was to establish a

baseline of performance relative to that feature set. The following pseudocode is an overview

of the process; the results and more details can be found in Chapter 5. The performance

statistics for each run were stored within a MySQL database along with information about

the configuration of that run.

f o r f e a t u r e S u b s e t i n s u b s e t C o l l e c t i o n :

f o r p r e p r o c e s s i n gCon f i g i n p pCo l l e c t i o n :

p r e p r o c e s s t h e i n p u t d a t a

f o r randomSeed i n s e e dC o l l e c t i o n :

s p l i t i n p u t d a t a i n t o a t r a i n i n g s e t and t e s t s e t (70 / 30)

f o r c l a s s i f e r i n c l a s s i f i e r C o l l e c t i o n :

t r a i n t h e c l a s s i f e r

g e t p r e d i c t i o n s u s i n g t h e t e s t s e t

c a l c u l a t e pe r fo rmance s t a t i s t i c s

For efficiency, Python’s multiprocessing library was used to spread the workload over 4

CPU cores. Each process worked on a subset of the set of different combinations of individual

features to investigate feature selection. It was not performed methodically, however, due

to the overall time required to do so; subsets were chosen in an exploratory fashion to test

different ideas about how individual features might be related. Overall, the results were not

noticeably different than using the set of all individual features; therefore, for efficiency and

code simplicity, all subsequent experiments used the entire set (which included polarity).

The preprocessing step was necessary as the scikit-learn library expects input data to be

standard normally distributed data (Gaussian with zero mean and unit variance). The data
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analysis phase revealed all of the continuous features to have something akin to a normal

distribution. There were a few features, such as the number of passive sentences, that had a

limited range; they were treated as categorical variables and preprocessed using scikit-learn’s

OneHotEncoder to turn them into a set of binary variables. Preprocessing of the discrete

features consisted of binarization or no preprocessing.

The classifiers used were ones available in the scikit-learn library: LR, C4.5 Decision

Trees, SVM, Naive Bayes, Multinomial Bayes, and Bernoulli Bayes. Each classifier was

always configured with the default settings. Hyperparameter optimization through automa-

tion was briefly investigated, but the cost/benefit ratio was too high (e.g. several hours to

typically get an increase of 1% to 2% in accuracy). Also, optimizing classifiers at that level

was not a focus of this research. Multinomial Bayes and Bernoulli Bayes were only used

when the feature set was composed of nominal features and not continuous real number

valued ones. As for cross-validation, Monte Carlo cross-validation (with 10 separate runs

using a constant set of 10 random seeds) was chosen as preliminary investigation showed

some possibly significant differences in performance when the percentage of the data used

for testing varied from 10% to 40%. The Ott dataset is small (only 1600 samples) and using

10-fold cross-validation would result in a test set of 160 samples which was viewed as too

little.

A final important point is that, for organizational purposes, the feature sets were labeled

as ‘continuous’ ones and ‘discrete’ ones. This provided a way of comparing feature sets in

a more general manner, and was used through the subsequent phases. The label depended

on the nature of the individual features within the feature set. The continuous set consisted

of readability, stylometry, tone, and sentiment. The discrete set was lexicon, POS, POS

bigrams, tags, and tag bigrams.

3.5.2 Individual Classifiers and Ensemble Methods

The process used in this phase was the same as in the first with the addition of a loop

before the loop over the list of classifiers. This loop iterated over the ensemble methods

(Bagging, Random Subspace, Random Patches, and two versions of AdaBoost) to use on the

different classifiers. The scikit-learn default settings for the ensemble methods were used

except for the second version of AdaBoost which had a higher learning rate. Investigation of

hyperparameter optimization was not performed, as explained. A discussion of results can

be found in Section 5.3. Stacking was also briefly examined to see how different classifiers

worked together alongwith varying the classifier hyperparameters. The second level classifier
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used was either Naive Bayes or Logistic Regression. But based on preliminary results and

the previous phases’ results, further investigation was unwarranted.

3.6 Use of Combined Feature Sets

3.6.1 Individual Classifiers

Again, the process was based on the first process. The difference was the feature sets were

combined in a systematic manner based on the feature set labels. There were three main

substages. First, all combinations of two or more continuous feature sets were processed, for

a total of 11 (the single feature sets having been examined in the first phase). The second

stage looped over the combinations of the discrete feature sets in the same manner; the total

number examined was 25. Finally, all combinations of continuous and discrete feature sets

were examined, for a total of 465. So every possible combination of two or more feature sets

was examined.

The software developed in the first phase only required a small change based on using

the Python’s itertools package and its ‘combinations’ function. Given a list of things and the

number of items to be chosen for one set, it returns an enumeration of all the combinations

in a sorted order, e.g. item 1 plus item 2, then 1+3, 1+4 and so on (if the total number was

2). Thus the 3 lists of different types of combined feature sets was processed. An outer loop

iterated over the number of items to be chosen, e.g. 4, 3, 2 when processing just the combined

continuous feature sets (4 being the total number of continuous individual feature sets; 1 was

not used as that would be repeating the experiments of the first phase). It was not apparent

at the beginning, but having combinations ordered in a logical fashion were of some use in

analyzing the results. Results are discussed in Chapter 6.

3.6.2 Individual Classifiers and Ensemble Methods

Again, this phase was very similar to the second one. The same process was followed with an

additional loop that iterated over the 5 different ensemble methods being investigated. A key

difference here is that not every possible combination of feature sets was ensembled. Only

the combinations of just continuous feature sets and just discrete feature sets (the two groups

of 11 and 25) were. Based on the results and the results seen in phase 2 (one feature set and

an ensemble method), the conclusion was that testing all 464 feature set combinations left

would be fruitless as well as take a large amount of time.
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3.7 Ensemblement of Classifiers

Investigating decision level data fusion required a different procedure, one based on using

a combination rule and multiple classifiers. Again, custom software was written using the

previously developed functions as building blocks. A pool of the best models (in terms of

accuracy) was created from the results of the previous phases stored in the database as well

as the experiment configurations. Three approaches, discussed in subsequent subsections,

were taken to thoroughly examine how ensemblement could improve classification accuracy

and the process of creating a hybrid ensemble. A key part of the process was efficiently

selecting classifiers to use in order to adequately sample the entire set of possible ensembles;

it quickly became apparent that a brute force approach of building every possible ensemble

was impractical. This issue is what lies behind Question 6; the different schemes developed

are briefly discussed below and more fully in Chapter 7.

These ensembles are Mixture of Experts type ones because there was no requirement

that all classifiers in an ensemble use the same training set of data, unlike with Stacked

Generalization. For example, an ensemble could consist of a Logistic Regression classifier

that used the stylometry feature set along with a SVM that used a combined sentiment and

tone feature set. Thus each classifier is an expert in a particular view of the text based on

the feature set or feature set combination used. This could also be considered a Random

Subspaces type ensemble, if the entire feature set is defined as the combination of all specific

feature sets and the same base classifier is used repeatedly. A proper Mixture of Expert style

ensemble would use a gating network to decide which experts are the best to listen to in a

specific situation. But for this study, only a simple majority voting rule was used.

Because of this new procedure, the training and test split process involved using just the

index numbers of the reviews and not an agglomeration of all feature values for all feature sets.

For each review in the training set, the feature set values relevant for a particular classifier

were read from the database before training. Thus each member of an ensemble did train

on the same review at each step, but only using the feature values relevant for it. The same

process was used for testing. The code ensured a 50/50 split between authentic and fake

reviews, but the polarity of the review was not considered as that information was contained

in the feature data.
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3.7.1 Classifiers That Use One Feature Set

This first approach to developing an ensemble used only the models developed in phase 1.

The feature set labels were used as a way to organize the process. First, just the models that

used a continuous feature set were combined into an ensemble. A classifier pool ordered

by decreasing accuracy was created; the minimum acceptable accuracy was set at 0.60.

The purpose of this cutoff was twofold. First, limiting the size of the pool reduced the

total number of ensembles to investigate. Second, an ensemble of classifiers with a large

difference in accuracywould be counter-productive; logically, the worse classifiers could have

a detrimental effect if their cumulative decision overrode the decision of the better classifiers.

Using Python’s ‘combinations’ function, all the possible sets (of N classifiers, N being an

odd number and starting at 3) were enumerated over while testing and training. To reduce the

amount of unnecessary work, training and testing were actually performed in a separate step

outside of the loop over the possible sets. This was possible because the classifier decisions

are independent of the ensemble size, so there is no point in repeatedly testing and training

the same classifiers over and over. Instead, the classifier’s output is saved and then the loop

over the possible sets combines the appropriate outputs using a majority voting rule. The loop

over 10 different random seeds (which does influence the training and testing) was handled

by farming out 10 different seeds to parallel Python processes. Thus the step involving the

most work (training and testing) is only performed once per seed.

Given it was impractical to evaluate all ensembles, the first 10,000 to 20,000 ensembles

were tested in order to gain a rough idea of performance. The ensemble size used when these

experiments were done varied from 3 to 7. But beyond an ensemble size of 5, the first 20,000

ensembles were only a fraction of the total number possible; it quickly became exponential.

The total number was also affected by the size of the classifier pool which was dependent

upon the minimum level of accuracy set. As the potential pool got larger, e.g., there was far

more acceptable classifiers that used discrete feature sets, selecting an acceptable cutoff limit

became more difficult. For instance, if the highest classifier accuracy was 0.705, why should

a classifier with an accuracy of 0.69 be excluded just because the cutoff was set to 0.70 in

order to limit the pool to 25 classifiers (versus 40, if the cutoff was 0.68)? In other words,

there were no guidelines on selecting an acceptable cutoff that did not prevent potentially

useful classifiers from being included in the pool.

Therefore, a decision was made to investigate ways to sample the entire set of possible

ensembles in a logical fashion. Sampling allows the entire set of possible ensembles to be

explored as well as allowing for a low cutoff limit (which greatly expands the entire set).
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Varying the cutoff limit and investigating how it affected the results of the sampling and

the ensembles would provide some heuristics for choosing better initial cutoffs. Another

motivation for sampling was that the graphs of the preliminary results of up to 20,000

ensembles revealed that a noticeable pattern was developing. This pattern is in how accuracy

changed as the index number of the ensemble did (the index number is its index in the ordered

list created by ‘combinations’). Therefore, taking advantage of this pattern in some fashion

was logically possible. This analysis is discussed at length in Section 7.2.

3.7.2 Classifier Selection Schemes

The term ‘scheme’ is used to define the process of ranking and subsequently ordering the

classifiers before iterating over them to create ensembles. For each scheme, the best N

classifiers (for an ensemble of size N) would be used; N being from 3 to the number

of classifiers in the pool. These schemes were a way, in effect, to sample the entire set of

possible ensembles in different ways. They also enable two thingswith regard to performance.

The first is the evaluation of how important individual classifier accuracy was to the overall

ensemble performance. The second is an investigation of how both classifier diversity and

the balance between accuracy and diversity affected performance. 17 different schemes were

created; the way the code was designed allowed for straightforward development of different

ordering schemes. Section 7.3 discusses the details of these schemes, how they performed,

and what they revealed about the relationship between ensemble accuracy, classifier accuracy,

and classifier diversity.

3.7.3 Classifiers That Use Combined Feature Sets

The investigation into classifiers that used combined feature sets was like the first except the

phase 3 models were used. Another change was, due to practical matters and time pressures,

the first 10,000 ensembles were not calculated. Doing so was only a way to get an initial

understanding of how all of the ensembles performed, leading to the development of the 17

schemes which showed some promise in reducing the amount of work needed to create well

performing ensembles. It would still be useful to calculate the first 10,000 to verify that

the best schemes are finding the higher quality ensembles, but time limitations precluded

this. They also prevented a full examination of the tradeoffs between classifier accuracy and

diversity; at this point, it was clear this was the new fundamental problem that prevented

further progress. Section 7.4 discusses the results and how they lead to the change in focus.
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3.7.4 Best Individual Classifiers and Ensembles

The initial idea for the final phase was to create ensembles out of the best classifiers that

use one feature set, multiple sets, or even out of ensembles of individual classifiers (as their

accuracy was comparable to the former). But results for the ensembles developed using just

combined feature sets showed only a modest improvement in accuracy. This was unexpected

and an investigation revealed the difference in accuracy between any two classifiers close

together in the ordered pool tended to be fairly small. A small variance in classifier accuracy

is of course acceptable, but a lack of diversity amongst the top ones would be detrimental.

Another important factor was the number of classifiers in the initial pool.

At this point, it became clear the next step neededwas to devise a procedure for winnowing

the initial pool of classifiers even before using schemes. The goal of the winnowing process

was to reduce the number of classifiers that were too similar to each other, i.e. if the pairwise

diversity measure was very low, then testing either classifiers in ensembles would logically

lead to very similar results. Chapter 8 discusses the preliminary work investigating a process

for winnowing a classifier pool and what it revealed about the dynamic relationship between

individual classifier accuracy, diversity measures, ensemble size, and ensemble accuracy.

3.8 Evaluation Metrics

The classification accuracy (averaged over 10 runs of the same 10 seeds) was recorded as

well as the sensitivity and specificity (calculated from the confusion matrix). The AUC was

recorded as well. Other studies have tended to use precision and recall, but as the dataset

used is a balanced one and this research is not in the field of information retrieval, sensitivity

and specificity were deemed appropriate. Precision and recall are more appropriate when the

dataset is imbalanced (Saito and Rehmsmeier, 2015) and there are important considerations

when using precision and recall as measures (Davis and Goadrich, 2006).

Statistical tests were used when needed to confirm the significance of the difference

between distributions as well as notched box plots that serve as an informal test of such

(McGill et al., 1978). The notches on a box plot show the 95% confidence interval for the

median and comparing them serves as an approximate 95% test of the null hypothesis (based

on the assumption of independent random samples from a normal distribution). Thus, when

notches do not overlap, it is likely the medians differ significantly. But overlap does not rule

out a significant difference, so when normality couldn’t be assumed, appropriate statistical

tests were carried out. A caveat to notched box plots is that comparisons of more than two is
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equivalent to multiple simultaneous hypothesis tests. This means the multiple comparisons

problem should be kept in mind, given the notches aren’t adjusted accordingly; i.e., notched

boxplots are an informal test. The notched box plots were created using R. Finally, critical

difference diagrams were used to graphically show the rankings of the different ensembles.

3.9 Tools and Datasets Used

The following is a list of the datasets and software packages used in the development process

for this research along with the related citations and a brief description.

3.9.1 spaCy

spaCy1 is a Python library for NLP. In the interests of consistency, it was used as the common

library for basic NLP tasks as opposed to the pastiche of toolkits used in previous research.

This could be a possible source of inconsistency between previous research and the results

in this paper. But because spaCy is a modern and industrial strength library that is kept up to

date, the results should be of a higher quality.

3.9.2 Empath

Empath2 (Fast et al., 2016) is a tool for analyzing the lexical categories of words within a

text. It is similar to LIWC which is used in many papers found in the literature review. But

LIWC is commercial software and also has a smaller database of lexical categories. Fast

et al. (2016) show Empath’s categories are highly correlated to the ones of LIWC (r=0.906)

so substitution of one for the other was deemed acceptable; any differences in results should

be negligible, but possibly still could have had an impact.

3.9.3 Python Natural Language Toolkit (NLTK)

The Python Natural Language Toolkit3 was used primarily as a common interface to several

tools which are contained within it. These tools are types not integrated into spaCy.

1https://spacy.io/, https://github.com/explosion/spaCy
2https://github.com/Ejhfast/empath-client
3http://www.nltk.org/

https://spacy.io/
https://github.com/explosion/spaCy
https://github.com/Ejhfast/empath-client
http://www.nltk.org/
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3.9.4 SentiWordNet

SentiWordNet4 (Baccianella et al., 2010) was used for sentiment analysis of the unigrams of

reviews. It provides not only separate positivity and negativity scores, but also objectivity as

opposed to other tools investigated.

3.9.5 VADER

VADER5 (Hutto and Gilbert, 2014) was also used for sentiment analysis, primarily because

it handles negation and n-grams of multiple words.

3.9.6 pattern.en

pattern.en6 (Smedt and Daelemans, 2012) is a Python module from the Computational

Linguistics and Psycholinguistics Research Center of the University of Antwerp. The func-

tionality within pattern.en largely overlaps with spaCy, so it was used only for its mood and

modality functions. The sentiment analysis functions were also utilized as it was very easy

to integrate and provides an alternative to the sentiment analysis results of SentiWordNet and

VADER.

3.9.7 IBMWatson Tone Analyzer

The Tone Analyzer7 was used to analyze review text along several high-level dimensions:

emotional tone, language tone, and social tone (based on the OCEAN personality model).

Something to note is that the Tone Analyzer has its own tokenization algorithm; there were

some differences in how it parsed the review text and broke it into sentences compared to

spaCy. References to the research behind the service can be found at https://www.ibm.

com/watson/developercloud/doc/tone-analyzer/references.html

3.9.8 Stanford Parser

The Stanford Parser8 (Petrov and Klein, 2007) was used for the grammatical parsing of

sentences as opposed to the Berkeley Parser used in Feng et al. (2012). This is because the

codebase for the Berkeley Parser is several years old, has no Python interface, and there were

4http://sentiwordnet.isti.cnr.it/
5https://github.com/cjhutto/vaderSentiment
6http://www.clips.ua.ac.be/pages/pattern-en
7https://www.ibm.com/watson/developercloud/tone-analyzer.html
8https://nlp.stanford.edu/software/lex-parser.shtml

https://www.ibm.com/watson/developercloud/doc/tone-analyzer/references.html
https://www.ibm.com/watson/developercloud/doc/tone-analyzer/references.html
http://sentiwordnet.isti.cnr.it/
https://github.com/cjhutto/vaderSentiment
http://www.clips.ua.ac.be/pages/pattern-en
https://www.ibm.com/watson/developercloud/tone-analyzer.html
https://nlp.stanford.edu/software/lex-parser.shtml
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issues with the recommended Python to Java library. The Stanford Parser, however, is being

maintained and the Python NLTK has an interface to its Java package. This might be a source

of differences, but again, an up to date tool is preferable.

3.9.9 Machine Learning Software

scikit-learn9 (Pedregosa et al., 2011) is a prominent Python library for research into machine

learning based systems. It was used as the basis for the code developed for this research along

with its extensive documentation.

TPOT10 (Olson et al., 2016) is a Python library for automating machine learning pipelines

which uses genetic programming. It was used for the preliminary investigation of hyperpa-

rameter optimization.

brew11 is a Python library focusing specifically on machine learning ensembles. It was

used to investigate the utility of stacked generalization.

scikit-plot12 was used for easily graphing most of the classification results from scikit-

learn.

3.9.10 Source Code

The pypi module “readability"13 was used to parse the review text and report different

readability measures. It was selected out of the numerous modules available due to its wider

variety of measures. The code was then enhanced with additional functionality; information

on those readability measures was acquired from the documentation for the R package

“koRpus"14

The code and information on Yule’s K and I measures was acquired from https://

gist.github.com/magnusnissel/d9521cb78b9ae0b2c7d6 and http://cmessner.

com/blog/?p=127

3.9.11 Datasets Used

Myle Ott kindly supplied the datasets used in Ott et al. (2011, 2013) which serve as the

foundation for this research.15

9http://scikit-learn.org/stable/index.html
10https://rhiever.github.io/tpot/
11https://github.com/viisar/brew
12https://github.com/reiinakano/scikit-plot
13https://pypi.python.org/pypi/readability
14https://cran.r-project.org/web/packages/koRpus/index.html
15http://myleott.com/op_spam/

https://gist.github.com/magnusnissel/d9521cb78b9ae0b2c7d6
https://gist.github.com/magnusnissel/d9521cb78b9ae0b2c7d6
http://cmessner.com/blog/?p=127
http://cmessner.com/blog/?p=127
http://scikit-learn.org/stable/index.html
https://rhiever.github.io/tpot/
https://github.com/viisar/brew
https://github.com/reiinakano/scikit-plot
https://pypi.python.org/pypi/readability
https://cran.r-project.org/web/packages/koRpus/index.html
http://myleott.com/op_spam/


Chapter 4

Feature Engineering

4.1 Overview

Multiple approaches were taken in deriving features from the review text: stylometry, read-

ability formulas, syntactic and sentiment analysis, lexical semantics, and personality and

tone analysis. The motivation for using these instead of the more common n-grams was to

investigate if capturing a more holistic view of the review was possible, hopefully improving

classification performance. Other studies have used these features, except for personality

and tone analysis, but not together in a comprehensive way. Each approach is briefly de-

fined, along with the set of associated features, and a rationale provided explaining their

applicability to classifying reviews.

These approaches all fall under the rubric of NLP, which first requires specific types of

preprocessing to be performed. These steps are tokenization, stop word removal, lemmati-

zation, POS tagging, and chunking. Tokenization is the process of segmenting a sequence

of characters into linguistic units such as words or punctuation. Based on this, sentences can

then be constructed. Stop word removal consists of removing, as needed depending on the

task, very common words such as “and" or “the". Lemmatization is the process of deducing

the lemma of a word, which is the base word as found in the dictionary. Part of speech tagging

is the process of deducing the role of a word within a sentence, e.g., the verbs. Chunking

consists of grouping the tokens, based on their lemmas and POS, into related units such as

noun phrases. All of these basic tasks were handled by the spaCy NLP library as part of the

initial steps of creating features out of the review text. spaCy was used (unless otherwise

noted) to provide a baseline of consistency in contrast to reusing the variety of tools used in

other research; there were some differences in results in preliminary testing.

27
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4.2 Stylometry

Stylometry is the analysis of text with regard to its linguistic style, e.g., the vocabulary used

or the length of sentences. Most stylometric features are simple measures easily calculated

by breaking down the text into different components, e.g., the number of sentences or count-

ing the number of word types. Other measures such as the diversity of the vocabulary are

straightforward formulas. The rationale for using stylometric features is based in psycholin-

guistics. Specifically, the key theory is that unconscious processes affect the language a

person uses and can not be fully compensated for, but it possesses quantifiable and distinctive

features (Ramyaa and Rasheed, 2004). An example is that liars have been shown to use less

first-person pronouns in spoken language, presumably to psychologically distance themselves

from their lies. On this basis, investigations into deceit with written text have also used sty-

lometric features. But research is still ongoing as the communication medium and the type

of communication (asynchronous or synchronous) are important factors in what statistics are

indicative of deceit.

Table 4.1 lists the stylometric features used. They were chosen partly because other

studies had used them successfully and because spaCy or the “readability” Python module

automatically calculated the measure when processing a review. Other possible features

which were excessively complex to calculate and would have required some amount of code

development were not used in the interests of time.

4.3 Readability

The readability of a text is another stylistic measure used in numerous studies. Readability

refers to how easily a reader might be able to understand a piece of text. However, there

is no formal definition of readability; a variety of measures have been proposed, all based

upon empirical studies and heuristics (Janan and Wray, 2012). There is a small set of well

known readability measures used in numerous studies, but for this research, some more

obscure formulas were also used. The rationale was that most of the formulas, especially

the common ones, are variations on a theme that involve evaluating a text typically based

on the number of words, sentences, characters, and syllables. The result is the American

educational level required to comprehend the text. Given the probable high correlation of

that subset of formulas, others based on a more abstract scale were also incorporated in the

interests of diversity. The Python module “readability” was easily adapted to report these

other measures; all features can be found in Table 4.2.
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Table 4.1: Stylometric Features

Feature Description
num_sent Number of sentences in the review
num_words Number of words in the review
words_per_sent Average words per sentence
chars_per_word Average length of a word
sylls_per_word Average number of syllables per word
type_per_token Ratio of word types (e.g. nouns) to tokens
long_words Number of words longer than 5 characters
complex_words Number of words more than 2 syllables
not_in_dc Number not in Dale-Chall list of common words
num_stopwords Number of stopwords
stopwords_per_words Average stopwords per words
num_puncts Number of punctuation marks
puncts_per_chars Average punctuation marks per characters
passive_sents Number of passive sentences
yulek_words Yule’s K statistic for words
yulei_words Yule’s I statistic for words
yulek_lemma Yule’s K statistic for word lemmas
yulei_lemma Yule’s I statistic for word lemmas
unique_pos_tri Unique POS trigrams normalized by the total number
long_words_words Long words per total number of words
complex_words_per_words Complex words per total number of words
not_in_DC_per_words Ratio of not_in_DC and total number of words

One rationale for using readability as a feature, besides it being a way to characterize a

text, is that if fake reviews are a form of marketing, then more readable reviews are more

easily comprehended by a larger majority of readers. Logically, an overly complex review

would put off readers if it seemed to require a college level education to comprehend. This

theory is supported by the observations noted in Vasquez (2014) that a large percentage of

online reviewers use writing reviews as a creative outlet to express themselves in well-written

literary style reviews. The readability measures of those reviews are undoubtedly higher

than for prosaic reviews, and so readability can serve as a mechanism for separating these

authentic reviews from the rest.

4.4 Syntactic Analysis

Syntax refers to how sentences are constructed and the rules for doing so. Only a shallow

analysis of the review text was performed, specifically the parts of speech categories that



30

Table 4.2: Readability Features

Formula Description
ARI Based on characters per words and words per sentences
Coleman 4 separate measures that use number of syllables, sentences, pronouns,

and prepositions per 100 words
Coleman-Liau Based on letters per 100 words and sentences per 100 words
ELF Based on number of syllables above one (per word) in sentences
Flesch Reading
Ease

Based on words per sentences and syllables per words

Farr-Jenkins-
Patterson

A variation on the Flesch Reading Ease formula

Fucks Fucks’ Stilcharakteristik uses number of words, characters and
sentences

Gunning Fog Uses average sentence length and percentage of complex words
Strain Based on number of syllables within sentences
Tuldava Based on average word length and average sentence length
Dale-Chall1 2 measures based on average sentence length
Dale-Chall2 and number of words not on Dale-Chall list of easy ones

spaCy automatically assigns when parsing text. spaCy uses the Google Universal POS tag

set1; the number of instances of each POS were counted, each POS being a feature. POS

bigrams were also collated, e.g., determinate+noun, as it was simple to code and might reveal

something when used as features. spaCy also supports a more sophisticated POS tagging

system based on the Penn Treebank set2. This is a more refined version of the Google set

containing more categories. This research refers to these features not as the POS feature set,

but the tag feature set. Bigrams of the tags were also calculated. The motivation for using

POS as features is again psycholinguistic research has shown there is something of a bias

with regard to certain categories used by liars, e.g., more nouns than usual or less pronouns.

A table of these features is not included as they would be large; the URLs in the footnotes

provide tables and an explanation of the POS.

More complex analyses of sentence structure are also possible, with dependency and

constituency parsing. These analyses establish how words are related to each other, e.g.,

what adjective modifies what noun or what set of words is a noun phrase. Using these as

a source of features was briefly investigated, but separate software would have been needed

which was not immediately usable with Python. As a result, due to time limits and the already

large number of feature sets, these two sources of features were left for later research.

1https://github.com/slavpetrov/universal-pos-tags
2https://ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos.html

https://github.com/slavpetrov/universal-pos-tags
https://ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos.html
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4.5 Sentiment Analysis

Sentiment analysis, also known as opinion mining, is an entire subfield of data mining.

Its overall goal is to identify and quantify the emotional aspects of text or other forms of

communication in order to determine any number of things. One is the affect (the emotional

states) of the speaker or writer; another is the intended emotional impact on the receiver of the

communication. The applicability of sentiment analysis for classifying reviews is obvious; a

review that is overly positive or negative, excessively so to a human, is more likely to be a fake

one trying to manipulate the reader. This idea is reflected in the consumer level heuristics

mentioned in the Introduction. The utility of this heuristic has decreased as spammers have

gotten more sophisticated in their writing, but sentiment analysis still can be useful as a

feature.

Exactly what tool to use was a difficult choice. There are quite a number of sentiment

analysis tools available and Ribeiro et al. (2016) benchmarked 24 versions. They show

that results for each varied considerably across a number of test datasets. The reason is a

number of factors: the training set the tool is built upon, the data being evaluated and how

it compares to the training set, how well sarcasm and negation is handled, and the fact that

positive messages or emotions are easier to evaluate than negative or neutral ones. Based on

the results, the tools VADER, SentiWordNet, and pattern.en were chosen to try and balance

various requirements. The first was to get a number of ‘opinions’ in case one method was

incorrect about the sentiment in a review. The second was to use tools that were based

on larger lexicons (older methods typically having a smaller one). Third, tools that had

Python interfaces available were essential, and finally, methods that were trained on a set of

product reviews (versus other sets like Twitter data). Another consideration was using tools

that provided both positive/negative or positive/neutral/negative scores so that neutrality as a

feature could be investigated. If the ranking of the tools on just product reviews was the only

consideration, then the SentiStrength tool would have been used. But it requires Java and so

for practical reasons was not used. SenticNet is another alternative, but the work to integrate

it was deemed too much given time limits.

Mood andmodality are two other affect relatedmeasures used as features, computed using

the pattern.en Python module. Mood, a term in grammar, refers to the intent of the verb or

the thought behind it. Pattern.en reports five moods: imperative, indicative, subjunctive, and

conditional. Definitions and examples of these moods can be found in Table 4.3. Mood was

investigated on the hypothesis that fake reviews, if they are more marketing influenced, would

show a stronger tendency towards having sentences with an imperative mood. This reflects
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the “call-to-action” philosophy of marketers, who consciously craft sentences to try to impel

the reader to do something (i.e., buy the advertised product) after emotionally influencing

them with the rest of the ad copy. Modality is a measure of the certainty expressed with a

sentence. Pattern.en reports a score of -1.0 to 1.0, where scores above 0.5 are indicative of

more factual statements, i.e., the statement is less easily interpreted as an opinion. It was not

immediately obvious of what use modality might be as a feature, but it was available.

Table 4.3: Mood Definitions and Examples

Mood Definition Example
Imperative A direct command or request Do not get a room at this hotel!
Indicative Factual statements or positive beliefs This hotel was very expensive
Subjunctive Expression of opinions or emotions A fabulous hotel!
Conditional If-then type statements This hotel would be ok if it was cheaper

Table 4.4 summarizes the sentiment related features. Each review was evaluated in its

entirety as well as each sentence individually and unigrams and bigrams (SentiWordNet can

only deal with unigrams). The rationale for gathering all this data was that preliminary

investigation revealed inconsistent behavior, e.g., one very positive sentence in a review (as it

was interpreted) may counter the other slightly negative sentences, thus leading to an overall

positive score which made no sense from a human interpretation. This inconsistency and

need for improvement in all the tools was discussed in Ribeiro et al. (2016). Based on analysis

of the results, the SentiWordNet features were dropped from consideration. Feature selection,

i.e., subsets of this entire set of features, was investigated as part of the first evaluation of

classification.

4.6 Lexical Semantics

Another way to analyze text is to categorize the more abstract concepts within the text

based on the words used. An example would be words related to the concept of death, e.g.,

dying, illness, hospital, or funeral. A rationale for this approach is that fake reviews might

predominantly focus on a specific set of abstract topics, such as dirty rooms or incompetent

staff, compared to a wider variety in authentic reviews. As mentioned, one tool commonly

used in many studies for lexical analysis (not just for classifying reviews) is the LIWC. But

the LIWC was not used as it is a commercial product.
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Table 4.4: Sentiment Features

Feature Tool Description
compound VADER The compound score reported for the entire review
positive VADER The positivity score reported for the entire review
negative VADER The negativity score reported for the entire review
neutral VADER The neutral score reported for the entire review
polarity pattern.en The polarity score reported for the entire review
objectivity pattern.en The objectivity score reported for the entire review
sumcmp VADER The total compound score over all sentences in a review
sumpos VADER The total positivity score over all sentences in a review
sumneg VADER The total negativity score over all sentences in a review
sumneu VADER The total neutrality score over all sentences in a review
sumpol pattern.en The total polarity score over all sentences in a review
sumobj pattern.en The total objectivity score over all sentences in a review
summod pattern.en The total modality score over all sentences in a review

Instead, a new tool called Empath was used, which has 194 categories and has been

favorably evaluated against the LIWC. spaCy was first used to tokenize the review and then

the lemmas of the words within the review (not including the stop words) were used as input

to the Empath software. The output consisted of each inbuilt Empath category and the count

and normalized count (over all words). Empath also allows for new categories to be created,

which would be something to investigate in a follow up study to see if review specific topics

might be useful features. Reviews are not about any generic thing, but a specific type of

thing, so a classifier trained on hotel reviews would logically not work well on Amazon

product reviews. A complete list of Empath’s categories can be found in the source code at

https://github.com/Ejhfast/empath-client.

4.7 Personality and Tone Analysis

One aspect of reviews that has not been explicitly considered is the perceived review credi-

bility. Hypothetically, a fake reviewer would try to increase it by emphasizing one or more

of the components of credibility: authoritativeness, expertise, and trustworthiness (Fogg and

Tseng, 1999). These qualities can not be definitively measured as they are partly a function

of the reader’s interpretation of the review and reviewer, but they could be inferred through

tangential measures. A possible one is the perceived personality of the writer; a reviewer

who seems open, conscientious, and not overly emotional will be perceived as more credible.

https://github.com/Ejhfast/empath-client
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If fake or authentic reviews are seen to have a large bias in terms of the reviewer’s personality,

then a classifier could utilize that knowledge.

Table 4.5 lists the different tones analyzed by IBM’s Tone Analyzer service and the related

measures. The social tone, or personality measures, were the initial focus, but as emotional

tone and language tone were available, they were also used as features. They could be thought

of as variants of sentiment analysis. The emotional tone features in particular were thought

to be potentially useful, as in fake reviews might be excessively emotional in the same way

the sentiment analysis might compute an excessive score. The values for these measures is a

real number from 0 to 1. A score less than 0.5 indicates the tone is unlikely to be perceived

within the content, while a score above 0.75 indicates a high likelihood. As the Tone analyzer

has its own text parsing system, spaCy was not used in this process.

Table 4.5: Social, Emotional, and Language Tone Features

Group Social Language Emotional

Tones

Agreeableness Anger
Conscientiousness Confident Disgust
Emotional Range Tentative Fear
Extraversion Analytical Joy
Openness Sadness
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4.8 Summary

Table 4.6 is a summary of the different feature sets used in this research. These feature sets

are only a subset of all possible ones; linguistic frames, constituency parsing of the grammar,

and topic models are potential feature sets that were not investigated due to time constraints.

The usual n-grams approach would also be useful to see if combining it with the entire extent

of possible feature sets could improve upon published results.

Table 4.6: Feature Sets Used

Feature Set Description Number Of
Individual Features

Readability Formulas for calculating text readability 15
Stylometry Measures of the style of the review text 22
Sentiment A sentiment analysis of the review text 13
Tone Different types of psychological tones

within a text
13

Lexicon Basic concepts underlying words 194
POS Parts of speech categories 17
POS Bigrams Combinations of two POS 225
Tags A more detailed version of POS 56
Tag Bigrams Combinations of two tags 1401



Chapter 5

Results with Individual Feature Sets

5.1 Overview

This chapter first presents the results from using just one individual feature set, in isolation,

with the six different classifiers. How they performed and possible explanations as to why

are discussed. The second part then examines how using ensemble methods on the models

affected performance as the former serves as a baseline for the latter.

5.2 Individual Classifiers

Table 5.1 summarizes the mean accuracy, sensitivity, specificity, and AUC for each classifier,

across each individual feature set. This set of data serves as a baseline for performance as

the simplest configuration is used: one feature set and no ensemble methods. The classifiers

used with each feature set are based upon whether the features are continuous ones or discrete

ones, e.g., Gaussian Naive Bayes classifiers do not work with discrete features and TF-IDF

was not used as a technique to create real valued features. The one exception is the lexicon

feature set where the Empath software also provided real numbers which were the counts

normalized over all words in the text; these were used as continuous features. Figure 5.1 is

a bar chart of the mean accuracy (with an error bar for the standard deviation) for the LR

classifier, which overall was more consistent in its performance than the others. Each feature

set is discussed in detail in the following subsections.
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Table 5.1: Results Per Feature Set and Classifier

Feature Set Classifier Acc. Sens. Spec. AUC

Stylometry

Logistic Regression 0.676 0.714 0.639 0.740
SVM 0.673 0.738 0.610 0.741
Naive Bayes 0.543 0.979 0.113 0.681
Decision Tree 0.591 0.585 0.598 0.592

Readability

Logistic Regression 0.667 0.687 0.645 0.717
SVM 0.654 0.706 0.603 0.705
Naive Bayes 0.562 0.647 0.480 0.592
Decision Tree 0.548 0.562 0.533 0.548

Sentiment

Logistic Regression 0.610 0.654 0.568 0.664
SVM 0.615 0.709 0.525 0.673
Naive Bayes 0.553 0.799 0.311 0.586
Decision Tree 0.547 0.548 0.547 0.547

Tone

Logistic Regression 0.632 0.667 0.599 0.674
SVM 0.634 0.763 0.508 0.682
Naive Bayes 0.622 0.589 0.657 0.668
Decision Tree 0.562 0.553 0.571 0.562

Lexicon

Logistic Regression 0.721 0.725 0.719 0.789
SVM 0.734 0.750 0.717 0.807
Naive Bayes 0.628 0.767 0.491 0.691
Multi Bayes 0.698 0.714 0.682 0.766
Bernoulli 0.685 0.694 0.679 0.753
Decision Tree 0.597 0.612 0.582 0.598

POS

Logistic Regression 0.701 0.764 0.641 0.765
SVM 0.575 0.420 0.735 0.643
Multi Bayes 0.692 0.736 0.651 0.760
Bernoulli 0.636 0.802 0.473 0.672
Decision Tree 0.595 0.604 0.587 0.595

POS Bigram

Logistic Regression 0.749 0.761 0.737 0.827
SVM 0.715 0.730 0.702 0.792
Multi Bayes 0.734 0.781 0.686 0.810
Bernoulli 0.684 0.767 0.602 0.764
Decision Tree 0.623 0.642 0.606 0.624

Tag

Logistic Regression 0.702 0.753 0.656 0.774
SVM 0.610 0.491 0.731 0.665
Multi Bayes 0.693 0.703 0.684 0.754
Bernoulli 0.662 0.751 0.576 0.723
Decision Tree 0.603 0.619 0.587 0.603

Tag Bigram

Logistic Regression 0.720 0.719 0.720 0.797
SVM 0.725 0.697 0.752 0.799
Multi Bayes 0.719 0.728 0.710 0.782
Bernoulli 0.709 0.761 0.659 0.786
Decision Tree 0.606 0.615 0.598 0.607
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Figure 5.1: Accuracy Over Individual Feature Sets

5.2.1 Stylometry and Readability

Examination of the histograms and density plots of the stylometric and readability features

provides an explanation as to why the Naive Bayes classifier performed so poorly. As the

example in Figure 5.7 shows, the difference between fake reviews and authentic ones tended

to be small for all the individual features; the distributions greatly overlapped and typically

had similar peaks. Naive Bayes classifiers utilize the mean and variance of the distribution of

values for a class, and if these are similar for multiple classes, the classifier will have a harder

time distinguishing between them. Therefore the only slightly better than chance results are

to be expected.

This is reflected in the large disparity between the sensitivity and specificity of the Naive

Bayes for several of the feature sets; the hypothesis is that classifiers were detecting particular

individual features as being very associated with one review class, but also consequently

makingmore errors on the other class. The confusionmatrices were noticeably imbalanced in

terms of the ratio between True Negatives and True Positives. This implies some dependence

amongst the stylometry and readability features, which is logical given how some are related.

Figure 5.2 is a good example that reflects this; it is the Naive Bayes’s ROC curves for one

particular seed when using the stylometric feature set. The curves are plotted as if each

class was the positive one; for our purposes, this is class 1 (the fakes). Thus the blue line
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is almost equivalent to the random chance baseline. This is reflected in the high sensitivity

and low specificity as seen in Table 5.1; the Naive Bayes classifier was very accurate at

detecting fakes (few false negatives), but therewere almost asmany false positives (incorrectly

classified authentic reviews). Several of the graphs for the seeds had lines like this while the

others showed more equivalence between the two lines. This variability is likely due to the

randomness of what reviews were used in training and test and what individual features the

Naive Bayes classifier decided to use.

Figure 5.2: Naive Bayes ROC Curves (Stylometry Feature Set)

As part of investigating this issue, histograms and density plots based on dividing the

review classes into 4 (authentic / fake, negative / positive) were created. Figure 5.3 is one

example (the distribution of the uniq_pos_trigram feature). In it, the plot for fake positive

reviews is contained entirely within the plot for authentic positive reviews and is separate in

that sense from the fake negative reviews. Based on this, it seems there is a possible XOR

aspect to this problem related to the review polarity. To quickly gauge the likely significance

of the difference between medians, a notched box plot was created. Figure 5.4 shows that

there is certainly a statistical difference between negative and positive reviews in terms of the

median for the uniq_pos_trigram feature. But for both polarities, there is not a significant

difference between authentic and fake reviews as the notches overlap. Based on these two

figures, the review polarity looks to be an important factor that hampers classifying reviews

correctly; this was not initially anticipated. If a classifier, due to the nature of the training set,

learns how to classify fake negatives very well, it may not perform as well on fake positives.
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Figure 5.3: Density Plots For uniq_pos_trigrams

Figure 5.4: Box Plots For uniq_pos_trigrams
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5.2.2 Sentiment

Table 5.2 reveals why all the classifiers had a less than desirable accuracy when using the

sentiment feature set. This matrix was calculated by cross referencing the review type against

the positivity feature level for the entire review. 0.5 and -0.5 are the cutoff points for definitive

significance, e.g., a score of 0.5 reflects a definitely positive sentiment. As this table and

related ones for the other sentiment features (not included) showed, negative reviews of either

type were mis-scored more often than the ones with positive sentiment. If an individual

feature is completely incorrect in what it is supposed to be measuring, that will certainly

affect classification accuracy.

The reasons for this misclassification of the review polarity are many, but there are two

major ones. First, the current state of the art in sentiment detection does not handle sarcasm

very well and sarcastic reviews for bad hotel experiences was common. Second, sentiment

analysis does not process conjunctions in a sophisticated fashion, e.g., sentences that include

the word ‘but’ can be classified as overall positive even though a human interpretation would

be negative. A more sophisticated analysis of the sentiment involving feature creation from

unigrams or bigrams, for example, might result in some benefit. But that would have required

more time and is a research project in its own right. So only the basic measures the sentiment

analysis tools provided were used.

Table 5.2: Number of Reviews Per Class and Positivity Scores

Positivity Score
Review Class < -0.5 < 0 0 > 0 > 0.5

Authentic / Negative 2 123 2 270 3
Authentic / Positive 0 0 0 353 47

Fake / Positive 0 0 0 330 70
Fake / Negative 3 176 2 219 0

As for mood and modality, there were some surprising results. The anticipation was that

fake reviews would have more imperative sentences based on the hypothesis the reviewer

would be more assertive and try to motivate the reader in some manner. Instead, there were

no significant differences between fake and authentic reviews in this regard. Assertiveness is

actually reflected in the modality score for authentic reviews; they contained more sentences

that were interpreted as statements of facts or statements of higher certainty. Figure 5.5 shows

the notched box plots of the modality score for the two types of reviews. The non-overlapping

notches imply that the sum of the modality for all sentences in authentic reviews is statistically



42

different than that for fake reviews. So as an exercise, first the histogram and density plots

for summodal were checked; they implied the distributions were skewed and R’s skewness()

function confirmed this. Therefore the Wilcoxon test was used to confirm the hypothesis

that the distributions were not equal; a t-test was not used as a log transformation looked

necessary and was more complicated. The calculated p-value was 5.005e-14, much less than

0.05, so this was confirmation the two distributions were significantly different.

Figure 5.5: Comparison Of sum(sentence modality) For Reviews

5.2.3 Tone Analysis

How well the tone features would work was uncertain, but as the results show, this feature

set does have some predictive power. Examining the histograms and density plots reveals

that the distributions for fake and authentic reviews were always very similar and the only

noticeable difference was sometimes higher peaks for one review type or the other. For

example, authentic reviews tended towards more expressions of joy than fake ones, in that

more authentic reviews had a score around 0.6 which was the place the highest peak exists.

Fake reviews peaked at 0.65 and at a lower level. As for why the accuracy of the classifiers

was less than 70%, an important factor is surely not enough text was provided to IBM’s Tone

Analyzer. Reviews tended to be short; their documentation states that accuracy is dependent

on the amount of text and 600 to 800 words or more is the ideal.
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5.2.4 Lexicon

Examining other studies that used the LIWC reveals comparable results to those generated

using the Empath software. There is some slight variation (e.g., Ott et al. (2011) report an

accuracy of 76.8% using a SVM and for this research, it was 73.4%) but there are three

factors that can explain this. The most obvious is methodological difference due to the

hyperparameter configuration (Ott et al. (2011) uses a linear kernel and nothing else was

stated, while scikit-learn by default uses a radial basis function kernel and the other default

settings were not changed). The second is how training and testing was performed. In Ott

et al. (2011), a 5-fold nested cross validation was performed (as opposed to the 10 fold Monte

Carlo procedure used) and in Ott et al. (2011), “Folds are selected so that each contains

all reviews from four hotels; thus, learned models are always evaluated on reviews from

unseen hotels.”. This method of selecting reviews is different than the random procedure

used in this study; it is not clear why the hotel was considered a significant variable, but

it ensured balanced classes. Finally, the dataset of Ott et al. (2011) contains only positive

reviews (of both classes); this study used both positive and negative reviews. As mentioned,

polarity looks to have a more significant influence than initially thought and so a slightly

lower accuracy for this study is not surprising. In the process of performing this research,

it was noted that, when a certain random seed (or two) was used, the results always tended

towards lower accuracy. This bias needs to be verified as it is only a suspicion, but if this

is indeed the case, it indicates there might be statistical anomalies or correlations within the

data such that the selection process for the training set can influence the accuracy more than

expected.

5.2.5 Parts Of Speech

The noticeably poor SVM performance when using the POS feature set was unexpected, so

an exploratory analysis was done. Comparing the number of fake reviews with a particular

POS to the number of authentic reviews reveals only 196 reviews at most (out of 1600) could

be distinguished by the presence or absence of a POS. Table 5.3 shows these 7 measures and

the difference between the numbers of each class. Obviously, individual POS features do not

have enough discriminatory power; SVMs end up with data points (for both types of reviews)

with the same value in most dimensions. Exactly how this would affect computations of the

hyperplane is an exercise left to the reader, but it would certainly have a negative impact

given how few POS features there are. Increasing the number of dimensions (from 17 to
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225) by creating POS bigram features addresses this issue; individual features now have

more discriminatory power, more variance, and better reflect the differences between fake

and authentic reviews. The improvement in all the classifier accuracies can be explained by

this expansion of the dimensions; there are too few features when using the basic POS feature

set and so decision boundaries are crude, increasing the generalization error.

Table 5.3: POS and Difference Between Authentic and Fake Reviews

POS SYM NUM X INTJ PART PROPN PRON
# of Reviews 196 151 58 57 15 14 9

5.2.6 Tags

The tag feature set is merely a refinement of the POS feature set, i.e., several tags are grouped

under one simpler POS. It is as if the number associated with an individual POS feature

is comprised of several whole numbers (the tag associated values) in certain ratios. The

expansion of the number of dimensions adds more space, in effect, between data points and

the two classes as a whole. Consequently, the SVM classifiers can find a better hyperplane

to distinguish between the two classes. The other classifiers work differently, so the lack of

a significant increase in accuracy is expected. The Bernoulli Bayes classifier does improve

somewhat; this can be explained by again more features equaling more independent binary

variables. The binary variables associated with the POS features have been split into smaller

components which are more precise or accurate in terms of correctly predicting the class

(and are now independent); POS based variables are cruder and the components interfere

with each other. As for the difference in results between using the tag feature set and the tag

bigram feature set, the explanation is the same as for the difference when using POS and POS

bigram feature sets. Bar charts of all this data were not included for reasons of space.

5.3 Individual Classifiers and Ensemble Methods

In general, using ensemble methods on an individual model (when using one feature set)

resulted in little to no improvement. For this reason, a table of the results is omitted; Figure 5.6

is an example that compares the results for base, Bagged, and AdaBoosted classifiers when

using the lexicon feature set. The other graphs for the different feature sets are very similar

in the general lack of improvement; these graphs can be found on the supplementary DVD.

The classifiers listed in each figure depend upon the nature of the feature set. For example,



45

Multinomial Bayes classifiers can not be used when there are continuous individual features

present, so it and the Bernoulli Bayes classifier only show up in certain graphs. Table 5.1

lists what classifiers were used with what feature sets.

Figure 5.6: Accuracy Using Lexicon Feature Set

The sole exception when an ensemble method added significant value was when the

base classifier was a Decision Tree and used with Bagging. This can be explained by first

examining the histograms and density plots of the individual features within the feature sets;

Figure 5.7 is one example that shows the histogram and density plot for the Yule’s K measure

for words. Both the authentic and fake reviews are graphed. The other features’ graphs

have been omitted as the majority of individual features have histograms and density plots

conceptually similar. As seen, there is only a small difference between the two distributions

and the histograms show the sets of values for Yule’s K (for authentic and fake) greatly

overlap. There is no specific range of values associated only with authentic reviews versus

fake ones; only a few features in specific feature sets have ranges that are associated with just

one class of review. They are at the extreme ends of the overall range of values which means

they are for just a small number of reviews and so are not helpful overall.

Based on reviewing all the individual feature histograms, the conclusion was there were

no very discriminative features for a Decision Tree to consistently utilize. The majority

displayed a distribution quite reminiscent of a normal distribution, in fact, for both types of

reviews. This results in the Decision Trees having high variance, based on the exact set of
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Figure 5.7: Histograms and Density Plots For Yule’s K (words)

reviews within the training set and the statistical trends or differences between the authentic

and fake reviews in it. How well a review in the test set maps to, or is similar to, the

appropriate subset in the training set determines the accuracy of its classification. Thus the

models are weak ones; devising the training set so it is representative of the entire distribution

would alleviate this, but then a more sophisticated way of creating the training set is needed.

So the results are poor performance for a Decision Tree across all the feature sets as

Table 5.1 shows. The possible XOR nature of the dataset is also a factor; fake negative

reviews have some distinct differences to fake positive reviews and so a Decision Tree biased

towards finding negatives will fail on the positives. Hyperparameter optimization may be

of some use, but would require a thorough analysis of the specific nature of the features to

configure the Decision Trees appropriately. Pruning overfitted trees is also an option, but

scikit-learn lacks supports for this. So when the Decision Tree is Bagged, the nature of the

bagging algorithm compensates for this variance in how Decision Trees perform. Using a

large number of trees, all trained on a different subset, is in effect a brute force approach to

the problem; the overall training set across all the trees becomes more representative of the

entire set. Thus the majority opinion on whether a review is fake, or not, wins.

As for AdaBoost, the reason it consistently failed to significantly improve classifiers

(and greatly degraded performance for some) possibly lies in the nature of the algorithm as

well. Boosting involves iteratively training classifiers and assigning weights to the training

samples based upon the current error on that sample. Weights are also assigned to classifiers
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to minimize the overall error at each stage. In this manner, classifiers are added that attempt

to correct for misclassified samples. If the training set is skewed towards one polarity of fake

reviews over the other (negatives versus positives), then subsequent classifiers beyond the

initial one could be biased towards the opposite polarity. Then when a negative fake review is

seen in the test set, there could be a higher probability that it is classified incorrectly because

the majority in the ensemble mistake it for an authentic review and override the classifiers

who do detect negative fake reviews. Thus the overall effect is to reduce the accuracy when

classifying the test set. This hypothesis could be tested by varying the distribution of polarities

within the training set (both authentic and fake) in a controlled fashion and determining how

that affects the performance of the boosted ensemble.

5.4 Conclusions

In general, the baseline performance of individual classifiers using different feature sets was

adequate. Table 5.1 summarizes the answers to Question 1 from Chapter 3. Classifiers

performed noticeably differently sometimes; this was traced back to characteristics of the

data set, the features, and how the classifiers work internally. Improvements in the feature en-

gineering to address these issues, especially for the sentiment based features, should provide

benefit. The overall impression is the individual classifiers reached a limit to their perfor-

mance. Hyperparameter optimization, a more thorough examination of feature selection, or

feature creation would be ways to determine this.

What was unexpected was the answer to Question 2. Using ensemble methods improved

performance very little, or was quite detrimental, except for with Bagging and Decision Trees.

A hypothesis for this is the nature of the feature data; the features for both types of reviews

have very similar distributions and so it is hard to classify things correctly as there are no

very discriminatory individual features. Metaphorically speaking, training several classifiers

on different chunks of the entire training set won’t help if the chunks are all very similar.

Thus the classifiers’ diversities (and decisions) won’t significantly differ and the ensemble as

a whole won’t have a higher accuracy. Bagged Decision Trees overcome this problem due to

the randomness inherent in creating Decision Trees. The differences between fake positive

reviews and fake negative ones (as for authentic reviews) also seem to be a factor in why

ensemble methods do not add value; e.g., classifiers in an AdaBoost ensemble might have

a strong bias towards one type of review because of the training set and so will make more

mistakes on the test set if there is a different distribution of positive and negative reviews.



Chapter 6

Results with Combined Feature Sets

6.1 Overview

This chapter first presents the results from using combinations of two or more feature sets as

a single one in conjunction with an individual classifier. How they performed and possible

explanations as to why are discussed. The second part then examines how using ensemble

methods on the models affected performance as the former serves as a baseline for the latter.

6.2 Individual Classifiers

There are 29 - 1 (511) distinct combinations of 9 features sets, including instances of one

feature set. The 9 individual feature sets were investigated in the first phase and results can

be found in Chapter 5. As training and testing was fairly efficient in terms of time required,

the other 502 combinations of two or more feature sets were all subsequently examined.

To reiterate, for organizational purposes, these were divided into three categories: the 11

combinations of the 4 features sets with continuous data (stylometry, readability, tone, and

sentiment), the 26 combinations of discrete feature sets (lexicon, POS, POS bigram, tag, and

tag bigram), and the remaining 465 combinations of both continuous and discrete feature

sets. These three categories are referred to in this chapter as ‘continuous’, ‘discrete’, and

‘continuous+discrete’, when it is not necessary to be more specific. The classifiers used for

each of the three subsets differed, based upon the nature of the features and what was possible;

e.g., a Multinomial Naive Bayes classifier with continuous individual features would have

required special processing and so it was not used.

A table showing the accuracy, sensitivity, specificity, and AUC of the 502 experiments

is out of scope, given the page limit. Figure 6.1 however is a concise summary showing

the accuracy for the 511 experiments with a LR classifier. The red line marks the highest

accuracy. As for the feature sets, they are arranged thusly: first by the type of feature

48
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set (individual continuous and discrete feature sets, combined continuous ones, combined

discrete ones, and then combinations of both) and second, by increasing accuracy within

that subset. This shows that from the first 9 points (the individual feature sets), the discrete

feature sets tend to perform better than the continuous ones. This also applies for the second

set which are the points in black: the combined continuous feature sets and then combined

discrete ones.

Figure 6.1: Accuracies For All Feature Set Combinations (Logistic Regression)

Figure 6.2 is the equivalent when SVM was used as the classifier. The same general

trends as before are seen, with more variance in the results. It should be noted that the black

triangle near the bottom around 0.60 is not an anomaly. It represents the accuracy for the

combination of the POS (accuracy of 57.5%) and tag feature sets (accuracy of 61%). Given

the POS feature set is a simplification of the tag feature set, it makes sense that combining the

two would reduce accuracy (or increase it, from the point of view of the POS feature set). The

first 8 continuous+discrete combinations (the lowest 8 green crosses) are also combinations

that include the POS feature set. Comparing these to the data points associated with those

feature set combinations with POS removed, it is obvious that adding a feature set can reduce

the beginning accuracy. This occurs when the classifier, when using the new feature set by

itself, has poor or lower accuracy. Logically, a large enough gap in the accuracies associated

with the base combination and the newly added feature set would have a detrimental effect.
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Figure 6.2: Accuracies For All Feature Set Combinations (SVM)

Therefore, feature level data fusion of feature sets of the same type adds some value,

albeit under about 6%, except in the case of the POS feature set and SVM classifiers. One

explanation is that the additional feature sets add knowledge about aspects of the text that

buttress related information provided by the first set, which might be initially borderline

in terms of determining the class. The nature of the relationship between two feature sets

is also something to consider; there is certainly a deeper relationship between stylometry

and readability, but not so much for stylometry and sentiment. The POS feature set is an

exception, it seems, because of how inaccurate it is by itself with the SVM classifier and the

deeper reasons previously examined as to why accuracy was only near chance. In effect, it

only adds noise to the feature data.

Finally, the rest of the continuous+discrete combinations (the green crosses on Figure 6.1)

range from an accuracy of 0.70 to 0.79. Surprisingly, this does not greatly exceed the highest

value achieved for combined discrete feature sets. The first hypothesis as to why is that

the addition of more individual features does not guarantee extra accuracy; given there is a

fixed set of 1600 possible data points in the dataset, the curse of dimensionality means the

predictive power of the classifier can decrease as the number of individual features increases.

Hidden or unknown correlations between features of two different feature sets may also be a

factor and this would affect the performance of a LR classifier. Statistical analysis, feature
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subset selection, or PCA would be potential methods to confirm these hypotheses. Ordering

classifiers differently in Figure 6.1 (e.g., based upon the feature set composition and not

accuracy) may also reveal some hidden relationships between feature sets and how adding

one always improves accuracy (or not). But ranking the usefulness of an individual feature

set or other such questions was not the focus of this study.

Figure 6.3 compares the best of the feature set combinations (comprised of 2 to 9 feature

sets, organized by accuracy) against the best individual feature set. A comparison of the values

for the posbigram set and the lexicon-posbigram set (var.test() to confirm homogeneous

variance, t.test() to test significance) resulted in a p-value of 0.005713. Comparing the

lexicon-posbigram data to the lexicon-pos-tagbigram data returned a p-value of 0.1167. So

the only significant statistical difference between these sets is between the posbigram and

the lexicon-posbigram sets. This shows adding more feature sets to a combination does not

automatically result in much of an improvement, but the additional feature sets may affect

diversity which would be useful if these classifiers are used within an ensemble. Graphs

similar to Figure 6.3 that start with a specific feature set as the base can be found on the DVD.

They show how accuracy changes as different feature sets are combined with the base and

what differences might be statistically significant.

Figure 6.3: Accuracies For Best Feature Set Combinations (Logistic Regression)



52

Figure 6.4: Box Plots of Accuracies For Feature Set Combinations

Figure 6.4 is another concise summarywhich shows the notched box plots of the accuracies

of combined continuous feature sets, discrete ones, and continuous+discrete. The red stars

mark the 95% confidence interval around the median. Using actually notched box plots

resulted in some graphical errors due to not enough samples for the continuous feature

sets. From this figure, the conclusion is that there is a likely significant difference between

the continuous and discrete feature set combinations, but not between the discrete and

continuous+discrete combinations.

6.3 Individual Classifiers and Ensemble Methods

The same general trends seen when using ensemble methods with classifiers that use indi-

vidual feature sets was seen in the results for classifiers that use combined feature sets. To

wit, only Bagging of Decision Trees improved accuracy significantly and AdaBoost tended

to dramatically decrease performance. Figure 6.5 is one example; the other graphs have been

omitted in the interests of space and can be found on the DVD. Again, the classifiers listed

in each graph depend on the nature of the individual features as with ensemble methods and

individual feature sets in the previous chapter.
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Figure 6.5: Accuracies For Readability-Stylometry-Tone-Sentiment Combination FS

Only the 37 combinations of combined continuous and combined discrete feature sets

were tested. Upon calculating that ensembling the other 465 combinations would take at

least 4 days of continuous operation, the experiment was halted. Preliminary results from

ensembling some continuous+discrete combinations did not show promise. Also, there

was no sign from the first 37 trials that an ensemble method might result in a noticeable

improvement for the other 465 (except for Decision Trees, based on the conclusions discussed

in Section 5.3). The ensemble methods of bagging and boosting are designed to reduce

variance or bias in the classifier decision, not the feature data. So if combining feature sets

into one improves accuracy (however little) it is not immediately obvious how variance or bias

might be increasing. Therefore, to acquire a higher performance beyond that of the feature

set combinations in Figure 6.1, ensemble methods were deemed useless as in Section 5.3.

To double check how adding the POS feature set might affect results when ensemble

methods were used, the combinations that use it were calculated. A quick review of the graphs

similar to Figure 6.5 revealed bagging and AdaBoost again did not improve performance with

any classifier expect Decision Trees. These graphs also showed, when compared to those for

combinations with POS removed, that adding the POS feature set was slightly detrimental,

but not significantly (typically about 1%). This was when the classifier was a SVM; LR

classifiers benefited in the same range when the POS feature set was added.
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6.4 Conclusions

As all possible combinations of the 9 feature sets were examined, the definitive answer

to Question 3 is that feature level data fusion has a modest impact in improving classifier

accuracy, but is dependent upon certain factors. The primary one is whether dissimilar or

similar types of feature sets (continuous or discrete) are being combined. Similar feature sets

reinforce each other in a positive fashion, but further analysis is needed to fully investigate

how the feature sets relate to one another to understand the results. A second factor is

probably the curse of dimensionality which impacts classifier performance when individual

features are increased and the size of the dataset is fixed. Thus adding more and more feature

sets together does not automatically results in more accuracy. A larger dataset of reviews

would aid in examining this hypothesis. Feature sets that do not work well with a specific

type of classifier also can have a detrimental effect when combined with other feature sets.

This implies something of a relationship between how a classifier works and the nature of

the feature data. Finally, the answer to Question 4 is the same as with Question 2: ensemble

methods do not generally aid in improving the classifier accuracy based on the same reasoning

explained in Section 5.3.



Chapter 7

Classifier Ensemblement

7.1 Overview

This chapter examines the results of ensembling the models created in previous phases in

the same methodical manner that maps to how the models were devised. Also included

is an explanation of how the analysis at each stage led to a more refined understanding of

the relationship between classifier accuracy, ensemble accuracy and diversity. How and why

analytical techniques were developed that addressed the problem of an exponentially growing

number of ensembles are also presented.

7.2 Classifiers that Use Only Individual Feature Sets

Looking at only the four continuous feature sets, Table 5.1 shows there are 9 classifiers

(using an individual feature set) with an accuracy above 0.6. These nine were used as the

initial pool and were ordered by decreasing accuracy. 0.6 was chosen as the cutoff to include

the sentiment related classifiers; the range between the best accuracy (0.675) and the worst

(0.61) lead to an hypothesis that using the latter would be very counter-productive. But as

Figure 7.1 shows, this was not true. This figure compares both the minimum and maximum

of the averaged (over 10 runs) accuracies of the ensembles of a specific size. The blue and

black lines denote the maximum and minimums, while the red and green lines denote the

averaged accuracy of the individual classifiers within the two ensembles. So blue and red are

paired together and black and green. Graphing both minimum andmaximum at the same time

allows for an easier comparison of how increasing ensemble size affects ensemble accuracy

(for this particular classifier pool) as well as how ensemblement improves performance. The

error bars of 1 standard deviation make the image a bit complex, so the black and green

lines were slightly offset. As the pool was so small, it was possible to evaluate all possible

ensembles and to do so using 10 random seeds and the training and test datasets.

55
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Figure 7.1: Ensemble Accuracy Versus Averaged Classifier Accuracy
(Individual Continuous Feature Sets)

Comparing the blue and red lines reveals increasing the ensemble size (to all nine classi-

fiers) slightly lowered the average classifier accuracy, but the ensemble’s maximum accuracy

stayed relatively constant. Thus adding less accurate classifiers did not impact ensemble

performance much. And graphing the minimum (the black and green lines) reveals how

performance improves as the ensemble gets larger and more accurate classifiers are added.

The difference between the two ensembles’ accuracies decreases notably as better classifiers

are added. The overall conclusion then is ensemble creation should first use the most accurate

classifiers. If worse classifiers are added, their impact will likely be small, up to the point

where too many of them override the decisions of the best classifiers. And if an ensemble

initially starts out with poor classifiers, adding more accurate ones will improve ensemble

accuracy, and possibly significantly.

Figure 7.2 is the same diagram for the ensembles created from classifiers using individual

discrete feature sets; the accuracy cutoff limit was 0.7. This limited the classifier pool to 11

and so examining all possible ensembles was tractable. The same trends in Figure 7.1 are

seen; the maximum ensemble accuracy’s larger drop is due to more classifiers at the low end

of the accuracy scale (5 were under 0.72) than in the previous experiment. And the difference

in accuracy is again fairly significant (about 5 to 6%).



57

Figure 7.2: Ensemble Accuracy Versus Averaged Classifier Accuracy
(Individual Discrete Feature Sets)

But when the cutoff limit was set to 0.6, the number of classifiers in the pool expanded to

20. The accuracy ranged from 0.748 to 0.610, so it was unlikely those at the bottom would

contribute significantly to the ensemble. The acceptable cutoff limit was unclear, however.

Using 0.69 would prevent two at the high end of 0.68 from being included and if 0.68 was

used (or even 0.69), a complete analysis of all possible ensembles was impractical. To get

an initial understanding of the data, the first 10,000 ensembles (the index number being that

determined by the Python ‘combinations’ function) and their accuracies were calculated and

graphed for ensemble sizes of 3, 5, and 7. As the ensemble size increased, a pattern started

to reveal itself. Figure 7.3 shows the first clear picture.

The sawtooth type pattern was unexpected, but upon reflection, a reasonable hypothesis

was devised. The classifiers were first arranged in the pool by decreasing accuracy. Then the

‘combinations’ function was used to select and combine them into an ensemble in an ordered

fashion. For instance, the first 5 most accurate classifiers formed the first ensemble, then the

second ensemble was composed of the first four and the sixth, skipping the fifth. The third

ensemble used the seventh classifier in place of the sixth; thus the ensembles were ordered

in a fashion corresponding to the order of the classifiers in the pool. So the overall trend

downwards in accuracy was due to less and less accurate classifiers being added, or replacing
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Figure 7.3: Accuracy Of First 10,000 Ensembles

the previous more accurate ones. This behavior is congruent with that seen in the graphs

for ensembles using individual continuous feature sets. An important thing to note is that

the best ensemble accuracy seen (the red line) is not associated with the very first ensemble

(that composed of the five most accurate classifiers). Instead, the most accurate ensemble on

this graph is one that comes later in the ordering, specifically the 148th ensemble that was

created. The classifiers used in this ensemble were the 1st, 2nd, 4th, 5th, and 17th. Obviously

the accuracy of each classifier in an ensemble is not the only important factor that determines

the ensemble’s accuracy.

The breaks, or jumps, in accuracy then became the focus. At what point in the ordering

scheme does this happen and why? The initial hypothesis was that these breaks denoted

roughly where the initial classifier used was moved forward, e.g., from the first classifier to

the second. Thus the pattern gets reset, in a metaphorical sense. This pattern is also seen

more distinctly in the plot when the ensemble size is 7 as it is denser. From this reason,

further work was done using that dataset.

To verify this hypothesis, a plot was made where the color of the points was determined

by the initial classifier, e.g., if the initial classifier was the first, points would be blue, if the

second classifier, then red. In the process of writing the R code to create the plot, there was

a realization that the first 10,000 points were not going to include any ensembles beginning
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with the second classifier. This is due to the exponential growth in the total number of

ensembles as the classifier pool size increases. Calculations showed the first 8568 ensembles

all began with classifiers 1 and 2. So they were used as the basis in developing Figure 7.4.

Each color represents what classifier is next in the ensemble list, past the first two classifiers.

It is apparent breaks are occurring when the third classifier changes.

Figure 7.4: Accuracy Of First 8568 Ensembles

The obvious explanation for both the breaks and the fact that the best ensembles were not

composed of only themost accurate classifiers is diversity. Why elsewould an ensemblemade

of the 1st, 2nd, 4th, 5th, and 17th be the most accurate? Just enough diversity would prevent

the classifiers within an ensemble making the wrong decision from becoming a majority. So

classifier 3, in Figure 7.3, agrees too much with the ones making the wrong decision, i.e., it

does not sufficiently contribute to overriding the bad decisions in the same way as classifier

17 does. In other words, classifier 17 makes the correct decisions that perhaps 3, 4, and 5 do

not and 1 and 2 do.

Referring to Figure 7.4, the blue points represent an ensemble that starts offwith classifiers

1, 2, and 3. The red points are those that start off with 1, 2, and 4. But 4 has a lower accuracy

than 3, so why is there is a notable increase in ensemble accuracy? The two classifiers in

question are a Multinomial Bayes and SVM that use the posbigram and the tagbigram feature

sets respectively (accuracies of 0.7337 and 0.7248). The pairwise disagreement between
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the two was calculated between 0.25 and 0.31 (depending on the random seed and thus

the training set). The average of 0.28 might seem low, but it implies about a third of the

decisions of the two classifiers are different despite the accuracy of the two being within

1%. Therefore, based on this analysis, it is apparent how crucial a factor diversity can be.

It succinctly explains the sawtooth pattern as well as the more accurate ensembles not being

immediately at the beginning of the graph. Any number of measures (e.g., overall ensemble

diversity) or a different ordering scheme could potentially result in revealing other useful

patterns, but this line of analysis was not performed due to the time required.

7.3 Classifier Selection Schemes

The next set of experiments proceeded by using both groups (classifiers using individual

continuous and individual discrete feature sets) in an ensemble. It was here that the problem

of exponential growth became apparent; there were 29 possible classifiers if 0.6 was used for

the cutoff. If 0.7was used, then there were only 11, but that list was the same as the experiment

using just individual discrete feature sets. If 0.65 was used, then only two of the continuous

feature set related classifiers would be in the classifier pool. As an exhaustive search was

infeasible, the idea of classifier selection schemes arose. If the sampling performed by these

schemes was able to sample the top of the sawtooth pattern and verified, then a reasonable

estimate of how the best ensembles performed could be made. There was no guarantee the

absolutely best ensemble could be found, of course. But the purpose of this study is not to

find it, but to gauge the benefit of creating custom ensembles in general.

The key parameters for a scheme are what measures are used in ordering the classifiers,

the function to do so, and the direction of the ordering. Table 7.1 list those devised;

Python’s partial function library was instrumental in allowing different schemes to be quickly

developed. A wide variety was used as it was unclear what might result, so varying the

ordering would enable comparisons to be made. As for pairwise diversities, after a classifier

pool was initially ordered according to decreasing accuracy, the pairwise diversities for each

classifier to the others was calculated and stored. The average of those became a characteristic

associated with the classifier. The median of the diversities was also computed; the basis

for this idea was to use the set of pairwise diversities as a distribution. To average them

reduces the distribution down to one number, but the distribution could be skewed and an

average would not capture that knowledge. Using the median or the median with the standard

deviation could possibly better reflect how a classifier was similar to the others as a whole.
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Table 7.1: Classifier Selection Schemes

Name Description Ordering
ByAcc Classifiers ordered by accuracy High to low
ByAcc1 Like ByAcc, with first classifier removed from list High to low
ByAcc2 Like ByAcc, with first 2 classifiers removed High to low
ByAcc3 Like ByAcc, with first 3 removed High to low
ByDiv Classifiers ordered by average of pairwise diversities High to low
ByDiv-R As above, but reverse ordering Low to high
ByAccDiv Ordered by accuracy * average diversity High to low
ByAccDiv-R As above, but reversed Low to high
ByAccMedDiv Ordered by accuracy * median pairwise diversity High to low
ByAccMedDiv-R As above, but reversed Low to high
ByAccMedSD Ordered by accuracy * median * std dev of diversity High to low
ByAccMedSD-R As above, but reversed Low to high
ByAccDivRO Like ByAccDiv, but first third moved to end of list Order modified
ByAccFS Like ByAcc, but feature sets a factor in selection High to low
ByAvgDivFS Like ByAccFS, but using ByAvgDiv ordering High to low
ByAccDivFS Like ByAccFS, but using ByAccDiv ordering High to low
ByAAD Classifiers chosen by accuracy, then accuracy*diversity High to low

The last 5 schemes were specifically developed to test ideas about how the ordering might

be optimized so more useful classifiers were higher in the list. The schemes involving the

feature sets first ensured classifiers using different feature sets were added, skipping over

duplicates even though they might be next in terms of accuracy. Once all feature sets had

been processed, the selection process rotated back to the top of the list, selecting from the

unused ones. The final scheme first used the top 3 classifiers, then reordered the rest based

on a measure of accuracy multiplied by diversity.

Once the ordered classifier pool had been assembled, the first N classifiers were selected

while looping over the ensemble size (from 3 to as many classifiers as possible). Two types

of diagrams were plotted to evaluate the behavior and performance of the schemes. The first

example, in Figure 7.5, is a strip plot that allows for the 17 schemes to be quickly compared in

terms of their distribution and variance. The red line marks the maximum ensemble accuracy

over all schemes. As it shows, scheme 16 (ByAAD) resulted in the highest ensemble accuracy,

equivalent to number 1, while 5, 7, and 9 found comparable ensembles.

The reason for the large variance for some of the schemes is undoubtedly due to themixing

of less accurate classifiers amongst the better classifiers, due to different ways diversity was

used in the ordering formula. This is supported by the fact that all the schemes where the

ordering was strictly by decreasing accuracy (schemes 0, 1, 2, 3, and 13) has the smallest
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variance. The general decrease in the maximum accuracy between schemes 0, 1, 2, and 3

also support this (1, 2, and 3 ignore the top classifiers). The behavior of schemes 0 to 3

reflect what is seen in the plots of the first 10,000 ensembles. But the slight increase in the

maximum accuracy for scheme 3 is something to note; it is a sign that the way classifiers

were picked increased diversity somewhat and so the ensemble’s performance (or range of it)

did not deteriorate as badly as it did between schemes 1 and 2. Comparing the distributions

of these sets of values to the distributions of the ensembles’ overall diversity measures may

reveal a connection.

Figure 7.5: Strip Plot Of Ensemble Accuracy Per Selection Schemes

The next example (Figure 7.6) is of the same data in Figure 7.5, but graphed according to

the ensemble size. The lines provide a view of the dynamic behavior of the ensemble accuracy

as its size changes. It also shows the results of each scheme’s sampling of the whole set of

ensembles. Figure 7.6 only displays the notable schemes; the schemes involving the median,

or the median and the standard deviation, did not perform substantially different than those

using the average of pairwise diversity. The slopes of the lines tended to be roughly equivalent;

only the accuracy at each point went up or down slightly. As Figure 7.6 shows, the ByAAD

scheme resulting finding ensembles that were fairly consistent in their accuracy despite the

increasing number of classifiers. The ByAcc scheme shows how including the classifiers

based strictly on accuracy resulted in a faster decreasing ensemble accuracy. Finally, the
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schemes that were reversals of each other (e.g. schemes By Div and ByDiv-R) behaved in an

unexpected way. Initially, it was thought they would be roughly mirror images of each, along

the horizontal axis. Instead, there is a general sense that they are rotated around the straight

line that connects the first point and the last. This is only a supposition and unclear what

it might imply, except that the impact of diversity is not entirely straightforward. Further

analysis needs to be done, including graphing the scheme that involves ordering the classifiers

by their accuracy in an increasing manner.

Figure 7.6: Line Plot Of Ensemble Accuracies Per Ensemble Size By Scheme

When the ensemble size was 29, all classifiers had been used, so consequently all schemes

ended at the same point. The benefit of displaying how ensemble accuracy changes as size

does, and based on the ordering of classifiers, reveals (in a qualitative manner) how diversity

and individual classifier accuracy affect ensemble accuracy. A thorough analysis of all the

data gathered is planned for a subsequent paper, but in general, there was no one scheme

that was always the best to use. The composition of the pool and the inter-diversity of the

classifiers were obviously important factors.

Figure 7.7 is a comparison of the overall ensemble accuracy (using scheme 16 and

averaged over 10 runs) and the average of the individual classifiers’ accuracy (when using

both continuous and discrete feature sets). The standard deviation is shown as well. As the

cutoff for classifier accuracy was 0.60 for individual classifiers, it is noticeably large, but
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for the ensemble as a whole, it stays fairly steady. It is obvious how ensemblement aids in

stabilizing the overall accuracy, even as less accurate classifiers are added as the ensemble

grows larger.

Figure 7.7: Ensemble Accuracy Versus Averaged Classifier Accuracy
(Individual Continuous+Discrete Feature Sets)

Figures 7.8 and 7.9 are graphs of how the mean sensitivity and specificity changed as

the ensemble size increased (for different schemes). Comparing the two reveals something

interesting, which was noted in other similar graphs. Sensitivity (the ability to correctly

detect when a review was fake) displays an overall trend of increasing as the ensemble size

goes up, however the classifiers were ordered. But specificity decreases slightly or increases

depending on the initial point. The schemes (not including the first) vary how classifiers are

ordered in the pool based on different ways of weighting diversity, so it seems the ability to

correctly detect authentic reviews (e.g., not make type I errors) is dependent on diversity in

some manner (as well as accuracy).
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Figure 7.8: Mean Ensemble Sensitivity Per Ensemble Size By Scheme
(Individual Continuous+Discrete Feature Sets)

Figure 7.9: Mean Ensemble Specificity Per Ensemble Size By Scheme
(Individual Continuous+Discrete Feature Sets)
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7.4 Classifiers That Use Only Combined Feature Sets

The next phase involved creating ensembles from the classifiers that use combinations of

feature sets as input data. Figures 7.10, 7.11, and 7.12 are examples of how the ensemble

accuracy changed as the size increased (all for scheme 0). In Figure 7.10, as in Figure 7.7,

there are signs of the stability of the ensemble accuracy (and its standard deviation) even

as ensemble size increases and the averaged individual classifier accuracy decreases (and its

standard deviation increases). This trend is even clear in Figure 7.11.

The sudden change in accuracy at certain points indicate places to investigate, i.e., what

the diversity of the ensemble and the classifiers is like at those points, or how did the classifier

composition change. Figure 7.11 is a good example of this; a sudden drop of about 2% was

certainly dramatic. But Figure 7.12 is noticeably different; the differences in accuracies was

very little and the standard deviations greatly overlap even as ensemble size increases. This

implies ensembling was becoming less effective. In other words, the difference between the

average individual classifier accuracy and the ensemble accuracy was generally decreasing,

at least less than that seen in the first phase that used less complex individual classifiers.

Figure 7.10: Ensemble Accuracy Versus Size
(Combined Continuous Feature Sets)
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Figure 7.11: Ensemble Accuracy Versus Size
(Combined Discrete Feature Sets)

Figure 7.12: Ensemble Accuracy Versus Size
(Combined Continuous+Discrete Feature Sets)
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The roots of this problem were traced back to two factors. The first was again the need

to choose an optimal cutoff for selecting classifiers to be in the initial pool. As the classifiers

became more complex (in terms of the type of feature set used), the possible choices kept

increasing. The other factor was again diversity. The top classifiers in the first scheme (that

ordered by accuracy) were becoming very similar in terms of their pairwise diversity. This

initial list is the basis for the other schemes, so reordering the list might provide some benefit,

but ultimately too similar classifiers ended up being ensembled. To summarize, if a cutoff

point was chosen to reduce the pool to a manageable size, then the likelihood of them being

too similar (and thus affecting ensemble performance) increased.

7.5 More Complex Ensembles

At this point, the next question became clear: how to winnow the set of potential classifiers

even before selecting them using a scheme to prevent ones that are too similar from being

within the pool. The next step, of ensembling classifiers that use combined discrete and

combined continuous+discrete feature sets, was briefly investigated to verify this (combined

continuous was not included because their accuracy was not comparable). The number of

classifiers with an accuracy greater than 0.78 (the maximum being 0.795) was 184; the top 24

alone had an accuracy greater than 0.79. Thus the next step in creating effective ensembles

that have a sufficient gain in accuracy becomes how tomanage the classifier pool. Winnowing

has only been briefly examined due to time limitations and is discussed in the next chapter.

In the process of the investigation, some preliminary theories have been developed on the

relationship between classifiers’ accuracy, their pairwise diversities, how classifiers cooperate

or conflict, and the effect on ensemble accuracy. Figure 7.11 was instrumental in this based

on the analysis of the downward spike.

7.6 Conclusions

Ensemblement by combining multiple classifiers with a majority voting rule (the topic of

Question 5) does sufficiently increase accuracy beyond that of any of the individual classifiers

such that it isworth the effort. Therefore the basic idea of usingmultiple feature sets in parallel,

including combined feature sets as the feature set, to enhance classification accuracy shows

promise. This is contrary to the results of using ensemble methods on a single classifier with

a single feature set (however complex) to construct an ensemble. But there are at least two
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important factors: the number of potentially useful classifiers and their diversity. This was

established through a methodical analysis of the ensembles by increasing the complexity of

the classifiers and the input data in a controlled fashion. As the complexity increased, these

two factors became limitations in searching the entire space of possible ensembles.

Schemes therefore were developed to more efficiently investigate possible ensembles

through a sampling process. This process is based upon how classifier are ranked and the

way they are selected. But schemes were still not sufficient as the pool size increased (and

the most accurate classifiers became more similar), so this lead to a preliminary investigation

(discussed in the next chapter) on how to winnow the classifier pool. But it is clear for this

dataset at least, if not for all text, that classification systems should involve analyzing the text

in multiple simultaneous ways to create feature sets in order to generate diverse classifiers.

Ensemble methods generally do not do well given how they try to improve accuracy by

manipulating only one feature set’s data to diversify the classifiers.

Figure 7.13 is a critical difference diagram of the some of the ensembles developed.

The names reflect the types of feature sets used. To properly compare them, the ensemble

size was set to 9 (so the simplest ensemble of individual continuous feature sets could be

compared) and the selection scheme was set to the first (one based on ordering classifiers by

their accuracy). This is not a thorough comparison; to do so require more analysis across

all the variables and more ensembling. But it provides some insight into how the ensembles

differ based on which feature sets are used. Comprehensively addressing the problem of

diversity would have a positive effect on accuracy for the ensembles where schemes were

used.

Figure 7.13: CD Diagram Of Ensembles (alpha=0.05, test=Nemenyi)



Chapter 8

Accuracy And Diversity

8.1 Overview

This chapter details the preliminary investigation into how a classifier poolmight bewinnowed

to reduce the size before assembling ensembles. The intent of this step is to make the classifier

selection and sampling process described in the previous chapter more efficient by eliminating

classifiers that are too similar. The algorithm and the rationale behind it is first outlined,

followed by examples of the analysis that led to its development.

8.2 The Winnowing Process

As part of the investigation into creating custom ensembles, the pairwise diversities between

classifiers initially selected were calculated and saved. It was uncertain of what use these

measures might be, so the disagreement measure was used as it is a straightforward calcula-

tion. The overall diversity of each ensemble was calculated as well using the entropy measure

E as it was analogous to the disagreement measure. When it became apparent that winnowing

the pool was necessary for efficiency, the question that arose was “how to determine how

similar a classifier was to another?”. Individual pairwise measures evaluate the relationship

between two classifiers, but how could the relationship between a classifier and all others in

an ensemble or a pool (as a whole) be evaluated? Based on this, treating all the pairwise

measures for one classifier as a vector becomes an obvious idea. Then two classifiers could

be labeled as ‘similar’ if their vectors are similar enough as defined by an appropriate distance

measure.

Clustering was the first idea for evaluating the closeness of all the vectors. Then all the

classifiers within a cluster with a low enough cohesiveness could be reduced to a single rep-

resentative. But that is an entire research project in of itself and deadlines were approaching.

To gain an initial understanding of what be might possible, a short circuit was devised. The

70
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intent of the winnowing is to eliminate classifiers, so all that matters is how close two clas-

sifiers are in terms of their diversity vector. Looping over the list of classifiers, the distance

between two vectors could be calculated and specific classifiers marked for winnowing.

The software was adapted to calculate all these different vectors (the distance measure

chosen was the cosine similarity) and the matrix of vectors for the classifiers (the vector of

cosine similarities, not pairwise diversity) displayed for analysis. Comparing thesematrices to

the graphs of the results of the selection schemes resulted in some preliminary understanding

of why the ensemble accuracy, for each scheme, varied as the ensemble size increased and

how the classifier pool was ordered. The next section is a detailed analysis of several figures

from Chapter 7 to explain this further, but a simple example now follows.

Table 8.1: Example Diversity Vectors

Classifier Diversity Vector
One 0 0.54 0.23
Two 0.54 0 0.26
Three 0.23 0.26 0

Table 8.2: Example Similarity Vectors

Classifier Similarity Vector
One 1 0.998 0.948
Two 0.998 1 0.921
Three 0.948 0.921 1

An important thing to note is that calculation of the similarity vectors involves removing

two of the numbers of the diversity vector first, i.e., the 0 which is the pairwise measure of a

classifier with itself and the measure that corresponds to the other classifier. Otherwise, the

positions of the two classifiers in the list become factors; the zeros are at different positions.

Two copies of the same classifier should have a similarity measure of 1 because their diversity

vectors are equivalent. A variant of this would move the two values to the front of the list

or move only the non-zero value and eliminating the zero. Exactly what might be useful

needs to be researched, but the essential point is to ensure the diversity measures at a specific

position within two vectors correspond to the same classifier.

So from the similarity vectors, we can see that classifiers One and Two are similar in that

they have roughly the same difference to Three despite having a high pairwise diversity. Two

and Three, and One and Three, however, are less similar because of the different difference

they have to the third. If a majority voting rule is being used to calculate the overall ensemble
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decision, classifiers One or Two can not be removed, but given an initial pool of four classi-

fiers, this approach could possibly provide guidance on what classifier to remove based on a

ranking of the similarities. Or Three might be the candidate to remove as it is much more sim-

ilar to One and Two than they are to each other. Thus the decision Three makes is more likely

to be the decision One or Two makes, but One and Two will disagree more often. Exactly

what to do depends on the overall composition of the ensemble and how different subsets of

classifiers within the ensemble agree and disagree; further research is needed to elucidate this.

A concise description of the algorithm would be as follows:

• Classifiers c1...ck

• Classifier ordering scheme CS

• Diversity measure D

• Similarity function S

• Vector transformation function T

1. Order the classifiers using CS

2. For all i in 1 ... k, calculate Dij(ci, cj) for all j in 1 ... k

3. For all i in 1... k,

• For all j in 1 ... k,

– Vi = T ({Di1, Di2...Dik})

– Vj = T ({Dj1, Dj2...Djk})

– calculate Sij(Vi, Vj)

8.3 The Dynamics Between Accuracy And Diversity

Besides being a possible technique by which classifier pools can be winnowed, similarity

vectors may also have the ability to provide an explanation or insight into how ensemble

accuracy varies as classifiers are added (or removed). An example is based on an analysis

of the line plots in Figure 8.1. Tables 8.3 to 8.6 present a portion of the matrix of similarity

vectors for the By Accuracy scheme, up to the ensemble of size 7 and the specific seed of
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Figure 8.1: Comparison Of Schemes (Combined Discrete Feature Sets)

1380. This is one of the 10 runs that were averaged to create the graph in Figure 7.11; all of

the line plots for the 10 seeds show this downward spike to some extent.

As seen in Figure 8.1, the By Accuracy scheme (and the By Acc, Acc*Div one as they

overlap) has a noticeable spike in ensemble accuracy at the beginning, (about 4%). Examining

how the similarity vectors change provides some insight into what is happening. Table 8.3 is

a list of the classifiers used and how they were ranked. The similarity vectors are displayed

in Tables 8.4 to 8.6; the pairwise diversity vectors are shown as well only to display how they

change between different Ns and thus the similarity vectors do.

Based on Table 8.4, it is easy to see how all the classifiers are fairly well in agreement, but

just enough diversity to increase the ensemble’s accuracy from that of the highest classifier

(0.7894) to just over 0.84. If one classifier decides incorrectly, the other two likely override

it. But when two more classifiers are added (4 and 5, Table 8.5), the ensemble in effect starts

dividing into voting blocks or factions. Examining the similarity vector for classifier 3 in

Table 8.5 reveals the first two classifiers are now less similar to the other three. The two most

accurate classifiers are now getting overridden presumably (determining how the classifiers

voted for each test sample would provide evidence for this). Thus the ensemble accuracy

drops drop down to only just above 80%. There is still some benefit to the ensemble, but

worse decisions are being made.
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Table 8.3: The First 7 Classifiers

Number Classifier Feature Set Accuracy
1 SVC-SVM lexicon-posbigram-tagbigram 0.7894
2 Logistic Regression lexicon-pos-tagbigram 0.7852
3 MultiBayes lexicon-tag-posbigram 0.7846
4 MultiBayes lexicon-posbigram-tagbigram 0.7841
5 MultiBayes lexicon-pos-posbigram-tagbigram 0.7829
6 Logistic Regression lexicon-pos-tag-tagbigram 0.7818
7 Logistic Regression lexicon-pos-posbigram-tagbigram 0.7810

Table 8.4: Diversity and Similarity Vectors (N=3)

Classifier Vector
1 0 0.181 0.148
2 0.181 0 0.217
3 0.148 0.217 0
1 1 0.982 0.996
2 1.0 1 0.995
3 1.0 1.0 1

Table 8.5: Diversity and Similarity Vectors (N=5)

Classifier Vector
1 0 0.181 0.148 0.142 0.148
2 0.181 0 0.217 0.202 0.200
3 0.148 0.217 0 0.040 0.042
4 0.142 0.202 0.040 0 0.015
5 0.148 0.200 0.042 0.015 0
1 1 0.988 0.873 0.831 0.845
2 0.999 1 0.837 0.777 0.778
3 0.833 0.806 1 0.995 0.995
4 0.781 0.727 0.995 1 1.0
5 0.794 0.723 0.995 1.0 1

However, when classifiers 6 and 7 are added, ensemble accuracy rises again and quite

dramatically. Reading Table 8.6, it seems classifiers 1, 3, 4, and 5 now have formed the

dominant faction, and because they are the highest (except for 2), overall accuracy increases

again. 2, 6, and 7 seem to have formed a smaller faction based on their similarity vectors

and what values are above 0.9. Exactly how to read these tables is unclear, as well as what

similarity values are significant and what are not. But in general, the view that factions
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compete within an ensemble and alliances change as new members are added is intuitive1.

Thus this provides some possible insight into how classifier accuracy and the inter-diversity

interact to influence the ensemble accuracy.

Table 8.6: Similarity Vectors (N=7)

Classifier Vector
1 1 0.822 0.923 0.901 0.909 0.826 0.859
2 0.777 1 0.629 0.586 0.591 1.0 0.995
3 0.911 0.479 1 0.998 0.998 0.634 0.662
4 0.886 0.436 0.998 1 1.0 0.59 0.635
5 0.894 0.447 0.998 1.0 1 0.596 0.64
6 0.782 1.0 0.485 0.442 0.453 1 0.996
7 0.824 0.995 0.538 0.502 0.512 0.996 1

8.4 Conclusions

This research intowinnowing is only preliminary, so therefore a conclusive answer toQuestion

6 posed in Chapter 3 is not possible. There are many variables to examine (the strengths and

limitations of using different diversity measures, the value of different similarity or distance

functions, and the utility of different vector transformations). Multiple diverse data sets also

must be analyzed to gauge how useful these concepts of diversity and similarity vectors are.

Another important question is how do the overall ensemble diversity measures relate to these

topics? But it is clear there looks to be some value in defining groups of classifiers as a unit

(using a particular method) and that one unit can be compared to another to gain possible

insights. Besides pairwise diversity and overall ensemble diversity, diversity between a

classifier and a set of classifiers (treated as a unit) looks to be useful. The concept of different

factions of classifiers (based on their similarities) that override one another based on the

input data, along with the idea that factions can change, is a useful metaphor for describing

ensembles.

Besides providing insight into how an initial pool of classifiers could be reduced to an

essential set based on their diversity or similarity vectors, these techniques also could be a

way to analyze the internals of an ensemble. The similarity vectors of ensembles created

using ensemble methods could be analyzed, presumably providing an explanation as to why

sometimes an ensemble method results in no performance improvement. Also, exactly how

an ensemble’s accuracy changes as its size (or composition) varies along with the similarity

1Any number of quotes from HBO’s Games Of Thrones would go here
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vectors is an obvious question as well as if there is an ideal set of similarity vectors or

characteristics of them. An end-to-end analysis of how individual test data points result in

different factions making the ultimate decision could be useful in pruning ensembles to an

optimal size or figuring out which classifiers need replaced to improve performance.

These preliminary results also shed light on how the ideal amount of diversity lies within

a range, i.e., not too much or too little. Exactly what this range is, how to determine it, and

how it might vary for different types of datasets and classifiers (and even the type of voting

rules) are open questions. A thorough investigation will aid in the better understanding of

the relationship between classifier accuracy, diversity, and ensemble accuracy.



Chapter 9

Discussion

9.1 Overview

This chapter discusses the research organized by a particular aspect: the data, the method-

ology, the experimental process, and the results. Various issues related to each aspect are

examined; this includes a discussion of how they might influence the conclusions of this

study.

9.2 Data

An important thing to note about the dataset used (the Ott dataset, from combining those

in Ott et al. (2011, 2013)) is that it is not entirely representative of real-world reviews, as

previously mentioned in Chapter 2. The larger difference in the word distribution for fake

and authentic reviews creates a situation where n-gram based features make it very easy to

distinguish between the two classes. This accounts for the numerous studies that use this

dataset and n-gram features which achieve accuracies around 90%. During this research,

a hypothesis was devised that could possibly explain the reason for this larger difference.

The Ott dataset was generated in part by hiring workers through the Amazon Mechanical

Turk service. Thus reviews generated by these people were known to be fake. There were

requirements imposed on the AMT workers, e.g., they only had 30 minutes to write a review

and they were to pretend they worked for the hotel’s marketing department, among other

basic requirements. The fundamental issue here is that any research that involves humans

who generate data for an experiment must take into account psychological, sociological, and

economic type factors; in a sense, the research is an experiment in psychology as much as

the main topic.

The generation of the Ott dataset apparently did not compensate well enough for some

important factors. AMT workers are typically paid a flat fee, not by the hour; the fee offered
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was one dollar. Therefore it was in their best interest to complete the work as quickly as

possible; 12% of the reviews were ostensibly written in under one minute, although Ott et al

have a hypothesis that explains this. From a writing standpoint, a very low fee and a time

limit is a recipe for lazy cliched writing that relies upon the first things that come to mind. For

a hotel review, that would be rude staff, dirty rooms, small beds, and other such stereotypical

topics associated with hotels. Thus the fake reviews that were generated most likely have

a smaller variance in the words used compared to the actual reviews from TripAdvisor that

were labeled as authentic. Cliched writing all sounds the same. This would account for the

larger difference in word distribution. An topic model based analysis of the Ott dataset could

provide some insight into this idea; if the known fake reviews discuss a smaller set of topics

than real-world reviews, then this hypothesis about the need to better control psychosocial

factors and economic incentives should be kept in mind when creating new datasets from

scratch. There also was no guarantee these fake reviewers had any training in marketing,

which could be considered a positive. But it also could be considered a negative in that non-

marketers theoretically would not write as well or convincingly; other studies have focused

on using actual marketers to generate reviews which makes more immediate sense if one is

trying to generate realistic fake reviews under controlled conditions.

This hypothesis is supported by the results of Banerjee and Chua (2014c) who conduct

sociological studies of actual reviewers to analyze their process. Reading their paper reveals

spam reviewers put a lot of effort into crafting reviews that are as realistic as possible. They

read other reviews, model their structure, plagiarize sentences from them, and so on; the

focus on ‘marketing’ is evident. Expecting an AMT worker to go to this much effort for a

token amount is unrealistic. It is for this reason the Ott dataset should not be considered a

‘gold-standard’ as the authors claim; the subsequent analysis of this dataset by others bears

this out. Li et al. (2014) address these concerns in part by enhancing the base Ott dataset

with reviews written by marketers and subject matter experts. The fact the base Ott dataset

is present despite its known limitations does not invalidate the results, but it does imply there

are caveats to any conclusions.

9.3 Methodology

The caveats associated with the Ott dataset are the reasons this study focused on not using

bag-of-words or any vocabulary based features. Instead, the focus was on determining if

there was any utility to using multiple feature sets based on more abstract analyses of the
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text. Also investigated was how the classifiers might be ensembled. This does not preclude

unknown statistical biases, such as the demonstrated word distribution issue, from influencing

the results; more research is needed to compare the feature sets from real-world reviews to the

Ott dataset’s. But in general, the questions posed in Chapter 3 were answered satisfactorily:

customized ensemblement of individual classifiers using a majority voting rule was shown

to have promise. Once the accuracy and diversity relationship is better understood, this will

lead to efficient creation of effective ensembles. The results were positive enough that it is

likely this set of techniques and feature sets would be applicable to classification of real-world

reviews. The Ott dataset is useful in that it is a known quantity and is well understood, so

therefore new techniques and different methodologies can be tested used it. But results from

using it should not be declared as definitive proof.

Another point to make about the methodology is that the polarity of a review is certainly

a factor in how well reviews can be classified. There is enough of a difference between fake

(or authentic) positive and negative reviews that implies classifiers are somewhat confused

sometimes, e.g., there is possibly two distinct subsets of feature data corresponding to each

type and the classifiers can not unify things. It could account for the leveling off of accuracy

of individual classifiers at about 80%. In this study, the review polarity was simply used as

an additional feature in the feature set to see if that approach was sufficient. The results when

using a feature set where polarity was not present were slightly less accurate. Follow-on

research should address this aspect in a more sophisticated way. One reason would be to

confirm this idea that some type of XOR situation is present, and two, to see how it could be

handled in a better manner. The training process used in this study randomly selected reviews

and did not consider their polarity, so undoubtedly there was a class imbalance in that respect

in the training data. This approach is more congruent to how a real world classification

system might deal with data. In contrast, Ott et al. (2013) trained classifiers only on positive

reviews, only on negative ones, and both in three phases. For test data, they used only the

positive or negative reviews and cross-validation. Thus class (polarity) imbalance was not an

issue, which could account for the higher accuracies achieved (as well as the fact unigrams

and bigrams were used as features). But their results also support the conclusion polarity is

an important factor.

Some other methodological improvements that could improve results would be using

PCA or linear discriminant analysis to guide the processes of feature selection and feature

extraction (or creation). Dimensionality reduction, especially when multiple feature sets are

combined, would aid in reducing correlated features and possibly improve performance. As
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for feature creation, the exploratory data analysis showed very clearly how fake and authentic

reviews overlapped in terms of the distribution of values for many features, so improving

the separability would only improve classifier performance. More analysis of the individual

features would be beneficial. Hyperparameter optimization was also not fully explored and

may add some benefit if building a system for production.

9.4 Experiments

An important distinction between this study and others is that k-fold cross-validation was not

used, but Monte Carlo. As mentioned, it was decided that 10 fold cross validation would

not be sufficient as that would leave only 160 samples to serve as a test set; overfitting was

a concern. 5 fold would leave 320 samples for testing, but using only 5 folds might not be

statistically sufficient. The question of what might result from a Monte Carlo approach was

also of interest. Results were generally comparable to other studies; this is examined in the

next section. But one important result seen was that particular random seeds seemed to be

always associated with the better (or worse) results (in terms of classifier accuracies). This

assumption needs to be supported by a detailed analysis of the data, but if true, it might provide

some insight into hidden correlations within the data. For instance, the right random seed

might have resulted in a set of reviews being used for training data that were all distributed in

the right sort of fashion along a particular set of individual features. This then lead to the test

data being more accurately classified. If these relationships could be determined, it might

lead to insights into how to best create new features that are more discriminative.

Also, as always, more time and more computer cores would have been useful because

they would have allowed for more experiments. Experiments were carried out in a thorough

fashion by subdividing the set of feature sets by the type of the data (continuous, discrete,

and then a mix), unlike other studies. This comprehensive approach provided a better

understanding of classification results and the value of feature sets relative to each other. It

was only near the end when the need for more time was apparent. Exactly how important

classifier diversity is and the impact of the best classifiers having insufficient inter-diversity

was not obvious at the start of this study. Improving ensemble accuracy into the mid or upper

80% range looks possible, but it is going to require more complex ensembles, perhaps ones

that involve using ensembles of ensembles to gain benefit from sufficiently diverse classifiers.

Investigating other feature sets like topic models or linguistic frames is also another approach

to increasing diversity.
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9.5 Results

The most obvious topic to discuss about the results is the poor performance of classifiers

when using the sentiment analysis based feature set. This study blindly used the output of

several sentiment analysis tools which were shown to be fairly incorrect in detecting negative

sentiment. A more sophisticated way (through feature creation or a finer grained analysis) or

using better tools that can handle the negative polarity reviews better would surely improve

results. The initial hypothesis that excessive sentiment would be indicative of inauthentic

reviews did not hold up, and as the results show, adding the sentiment based feature set

to others tended to depress the accuracy. Peng and Zhong (2014) is a good example of a

more sophisticated way to address sentiment; they calculate a score based on the individual

sentiment associated with specific features of the product being reviewed and those features

are weighted. For example, a phone may be expensive, so the sentiment and weight attached

to the price are important factors, but if the phone’s other features are all positively scored,

the overall sentiment score is high. Thus the accuracy of around 84% is not unexpected; the

official or true sentiment class was based on the overall review score of 1 to 5 stars. The

sentiment scores are then used in a time series analysis to detect anomalies in the ratings and

thus what reviews are most likely spam; sentiment is not directly used to classify reviews.

Another important consideration is that this study, as far as the literature review revealed,

is the second one to use the Empath software in place of the more commonly used LIWC. Ott

et al. (2011) report an accuracy of 76.8% when using a LIWC based feature set with a SVM;

our results of 73.4% and a SVM are comparable, especially considering the SVM configura-

tions were different as well as the polarities of the reviews in each dataset. Unfortunately, Ott

et al. (2013) which also used the LIWC does not report results broken down by the feature

set used, but only along polarities. Li et al. (2014) do, and their results associated with the

LIWC range from 72% to 76%; the complexity of their methodology prevents a more refined

comparison. But overall, it can be concluded the Empath software is an acceptable substitute

for the LIWC and the extensibility of the Empath software is a potential benefit; it could

be customized appropriately depending on the exact type or subject under review or other

review characteristics.

As for a comparison to the few previous studies that investigated ensembles and review

classification, two of them used n-grams as the features. So their results can not be compared

because, as discussed, the Ott dataset has a distinct difference in the distribution of words

between fakes and authentic reviews. Thus studies that use n-grams tend to report greater

accuracies; also, only ensemble methods were used, not custom ensemblement. Banerjee
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et al. (2015) however uses a combination of different feature sets more akin to this research.

Besides stylometric, POS, and readability, the last set can be labeled as word ‘categories’, i.e.,

a lexical feature set. Some examples would be past tense words, casual words, and motion

related words; the LIWC was used to acquire this type of data. Another difference is that

review titles were also processed, unlike in this study.

The most important consideration however is that Banerjee et al. (2015) used their own

dataset of authentic and human generated fake reviews, not the Ott dataset. So only a rough

comparison of results can be made. The accuracies for single classifiers, all using the same

feature set, ranged from 64% to 71% and the voting ensemble of all nine classifiers improved

the accuracy to 74%. So these results are in line with the results of this study, showing

hybrid ensembles can improve performance. Performing this study again using the Banerjee

dataset would be interesting; it is an open question if their dataset has the problems with

word distribution that the Ott dataset does. Another aspect of the Banerjee dataset is that

it included reviews of moderate polarity (neither wholly negative or positive), so that was

certainly a complicating factor that influenced results.



Chapter 10

Conclusion

10.1 Main Findings

The economic impact of fake reviews is a significant problem as well as the ever-increasing

extent of it. Improving the classification accuracy of machine learning systems is crucial if

this issue is going to be effectively addressed. This research investigated how feature level

and decision level fusion could improve the classification of fake reviews by addressing five

specific questions.

Question 1 involved establishing a baseline for performance when using a single classifier

and a single feature set. The best accuracies per each feature set ranged from 0.610 to 0.749,

while the AUC scores ranged from 0.673 to 0.827. Logistic Regression classifiers in general

were the most accurate with SVM a close second, although more variable depending on the

feature set. Feature sets with discrete individual features, such as POS, were associated with

higher accuracies than continuous feature sets like readability measures; this was attributed

to the discrete feature set data showing more of a distinction between fake and authentic

reviews while the distribution of values (fake and authentic) for the continuous feature sets

greatly overlapped.

Ensemble methods, the subject of Question 2, did not improve the accuracy of these

base classifiers at all except in the case of Bagging and Decision Trees. An analysis of how

the ensemble methods work, and what would result given the specific characteristics of this

particular dataset, provided an explanation. One key factor was the only slight difference

in the distribution of some features’ values between fake and authentic reviews. The way

Bagging leverages the variance of multiple Decision Trees, resulting in better accuracy,

overcomes this problem that other types of classifiers can not. The other significant factor

was the polarity of a review (negative or positive); there is sometimes a notable difference

between the two review types in terms of feature value distributions. Thus classifiers that

were accurate for positive reviews (authentic or fake) failed more often when faced with a
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negative review and AdaBoost, because of how it works, created ensembles that were more

likely to misclassify reviews that were confusing because of the polarity and the composition

of the training dataset.

Question 3 addressed whether combining feature sets into one was beneficial when using

a single classifier. It did result in a modest improvement compared to the best individual

feature set and again Logistic Regression was the best classifier in general. Combining

only discrete feature sets with each other resulted in greater overall accuracy compared to

combining just continuous feature sets, but the lower accuracies associated with each of the

continuous feature sets was certainly a factor. Combining both types of feature sets together

in different combinations showed some improvement as well. But in the interest of efficiency,

using only combinations of a few discrete feature sets is sufficient given the effort involved

in more complex arrangements.

As for using ensemblemethodswith a single classifier and combined feature sets (Question

4), once again only Bagging and Decision Trees resulted in any improvement in performance.

Combining feature sets into one essentially did not introduce any variance into the decisions

made by the members of the ensemble. Thus the ability to override an initially incorrect

decision made by the base classifier, which ensemble methods engender, was not present.

Using Bagging with Decision Trees does engender this ability as previous explained in the

answer to Question 2.

The final question addressed whether hybrid ensembles, composed of individual classi-

fiers fromQuestion 1 and 3, would improve performance. Amethodical investigation revealed

how ensemblement using a simple majority voting rule (and selecting the right classifiers)

could result in reasonably large gains in overall accuracy. However, the problem of what

classifiers to use quickly became an issue. This is due to the size of the potential classifier

pool growing as classifiers became more complex (in terms of the feature sets used) while the

same general level of accuracy is maintained. Schemes for ordering and selecting classifiers

based on a variety of parameters were then devised. This allowed the entire set of possible

ensembles to be sampled, alleviating the need to construct each one for evaluation.

Classifier selection schemes show some promise as a technique, but the problem of

diversity became even more important as the classifier pool kept increasing and the top

classifiers less diverse. A sixth question was then formulated. To address this question, the

concepts of diversity and similarity vectors were created. Based on evaluating the similarity

of two classifiers’ diversity vectors (vectors of the pairwise diversity between a classifier and

the others), these vectors allow for the evaluation of how one classifier relates to the others
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as a whole; classifiers that are comparable in accuracy and have close enough similarity or

diversity to the others can logically be eliminated from the pool. Analysis also revealed how

similarity vectors might be used to understand the changes in an ensemble’s accuracy as

classifiers are added to it, as well as understand exactly how classifiers within an ensemble

cooperate. This was preliminary research and there are many parameters to investigate before

determining the utility of this technique, but it shows promise in furthering the understanding

of how individual classifier accuracy, ensemble accuracy, and diversity are interrelated.

10.2 Suggestions for Further Work

It is a truism that answering one question only creates more questions. The following list is

extensive, so themajor ideas are stately as briefly as possible; minor ones such as investigating

hyperparameter optimization are not.

• How does adding more feature sets (topic models, linguistic frames, or grammar based

features), or improving the existing ones, aid in improving performance?

• Would using a classic Mixture Of Experts model, with a gating network, improve

performance over using a voting rule? How would feature sets clash?

• Does the methodology used in this research work with real world review datasets, not

just the somewhat artificial Ott dataset?

• Does treating this as a four class problem improve results, in that negative and positive

fake reviews are better distinguished and the results combined?

• If viewed as a four class problem, can ensembles be created that, in effect, act as a

multiplexor (e.g., 3 classes, authentic, fake positive, and fake negative reviews)?

• Would a two stage process of classifying by polarity, then by authenticity, improve

results?

• Would ensembling the Naive Bayes classifiers with high sensitivity and low specificity,

in a ECOC way, work?

• Does an analysis of the similarity or diversity vectors of ensembles created through

ensemble methods reflect their observed behavior?

• How can using pool winnowing and similarity vectors improve the selection of more

effective classifiers?
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• Would clustering of classifiers (based on their diversity vectors) in order to find a single

representative one aid in winnowing the pool?

• Are different patterns revealed if the first 10,000 ensemble accuracies (or overall diver-

sities) are graphed using different pool ordering schemes?

• What improvement might result from ensembling the different types of complex clas-

sifiers together and also with ensembles of the simpler classifiers?
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