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Executive Summary

The study described in this report has been conducted to investigate several data mining techniques to fur-
ther serve the USFS’s mission of managing America’s wilderness resources. Data mining may be a popular
buzzword, but it is not a brand new technology. It is merely a process involving the sophisticated use of
statistics and models to discern patterns in raw data. From this, knowledge and information can be derived
or inferred in order to provide better understanding for better decision making. Thus data mining can aid
the USFS in more effective and efficient use of its resources, especially in a time of widespread government
cutbacks for U.S. scientific agencies.

There were two main objectives to this study, which examined USFS data on forest cover (Region 2, the Rocky
Mountain Region). The first involved developing models for predicting forest cover; each type of forest cover
requires different management strategies and thus different allocations of resources. The second objective was
to analyze specific areas where cottonwood and willow trees (Forest Cover Type 4) predominate for insights
on how they might be managed better. This is needed due to the specialized requirements for this type of
forest cover. Sections 2 and 3 describe in detail how these objectives were met, while section 1 is an overview
of the study and how the forest cover data was first prepared for analysis.

To summarize, a decision tree model was developed that successfully predicted the type of forest cover that
was present based on only 5 features: Elevation, H Dist Road, H Dist FP, Soil Type and a combination of
Shade 9 times V Dist Hyd. The accuracy of this decision tree model was from 91% to 93% for four of the
cover types (CT1, CT2, CT3, and CT7); for the other three, it ranged from 81% to 84%. The overall accuracy
on the validation set was 92.9%. These are far better results than the 70% accuracy achieved in a previous
study.

The other type of classification algorithm investigated was clustering, but this was not as successful. Only
the elevation of and area of wilderness a forest cell was in were shown to be useful with this type of model.
The failure was due to the statistical properties of the other available data; there is a lot of commonality be-
tween most of the cover types along various axes, and clustering is not an ideal method under these conditions.

The second objective, that of determining what might be unique or notable about Forest Cover Type 4, was
also successfully accomplished. First, the data supported theories about cottonwood and willow trees requir-
ing a close water source and more sun than other types of cover. The other insights were that all the cells are
fairly close to existing roads and to firepoints as well, which has logistical implications, e.g. the management
of forest fires.

Based on the results of this study, the recommendation is that the USFS adopt data mining to use in fulfilling
various its various responsibilities. Not only can the scientific research the USFS conducts be enhanced,
the insights data mining offers are applicable to the various USFS programs for managing America’s forest
resources. The only recommendation going forward if this data mining program is to continue is that more
data must be gathered for cells of cover types 3 to 7 and in the Neota and Cache la Poudre wilderness areas.
This is because there is a surfeit of data related to cover types 1 and 2 and the other wilderness areas which
impacts the data mining effort.

2



1 Preliminary Work

For this study, the Knowledge Discovery and Data Mining methodology was followed; the tools used were
IBM’s SPSS Modeler, RStudio, and Python software scripts as necessary. This section details the initial steps
taken in any data mining project. First, the problem or questions were clarified, data initially analyzed, and
a feasibility assessment made. As the project was deemed feasible and no other requirements were needed,
the data preparation phase was then undertaken. Each step is explained below in more detail.

1.1 Problem Clarification

According to the RFP, the USFS would like to understand two things:

1. how existing data on forest cover can be analyzed to predict what type will arise in a specific area

2. if there are any patterns specifically related to Cover Type 4 (CT4) applicable for management strategies

These questions can be addressed by two data mining approaches: prediction and description. Prediction
involves training machine learning classifiers on available data, and then evaluating how well these models
can predict variables of interest. Section 2 describes in more detail how question 1 was investigated and the
results. Question 2 required a description type of analysis to uncover information within the raw data about
CT4; this phase is covered in section 3.

1.2 Data Analysis

A thorough understanding of the data is necessary before beginning any data mining effort. This assessment
is to characterize the data in various ways and to gain an understanding of its statistical properties. By doing
so, problems with the data, how to deal with them, and what other data might be required can be uncovered.
Appendix A contains the data dictionary resulting from the analysis of the supplied forest cover data. This
section highlights some conclusions about some fields in the data. The term ‘field’ is used more in the software
development industry, with respect to databases. But in the data mining community, ‘feature’ is preferred
and therefore is used in this report.

The preliminary analysis revealed that two sets of features (the four Wilderness Area and the 40 Soil Type
ones) were an attempt to use a bitfield type of scheme to denote the value of something that is better expressed
as a single categorical feature. This may be a carryover from the original study which investigated using neural
networks for classification purposes. Details on how these features were reduced to two categoricals can be
found in Appendix A. Normally this type of step would be done in the data processing phase, but immediately
doing this addressed certain issues related to SPSS Modeler.

The analysis also revealed most records (85.22%) are associated with CT1 and CT2, while only 0.473%
for CT4. This is a clear sign that the dataset must be balanced before dividing it into training, test, and
validation. Otherwise, the likelihood of no training data related to CT4 being present would be high.

Tables A.2 and A.3 are the results of analyzing how the cover type relates to the different features, specifically
the minimum and maximum for the continuous values and exactly which soil types are correlated with each
cover type. This was to investigate if there were any obvious patterns or something noticeable in the data.
The Python script ‘breakdownData.py’ (B.2) was written for this.

1.3 Feasibility Assessment

After the analysis had finished, the data was deemed fit for purpose and a determination made that no
extra resources (e.g. more data, personnel, or computing resources) were required before further work could
commence. This work consisted of cleaning the data and an initial pre-processing to reduce the dimensionality
of the data for efficiency.
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1.4 Data Cleaning

Data cleaning is a quality control process that only happens once, at the start of a data mining project, in
order to regularize the data and to fix basic issues. These issues include: missing data, null values, formatting
issues with the source data, and data values that are out of range or unexpected. None of these problems
were detected with the Forest CoverType database, so data imputation was unnecessary and no records had
to be deleted or modified.

Outliers in the data are also handled during the data cleaning phase. The benefit is that this deals with
noise in the data and unusual values that might be errors or perhaps rare values that should be prevented
from having an impact on the classification process. An example is clustering methods; they can be sensitive
to outliers which might affect the initial starting conditions in a detrimental way. SPSS Modeler provides a
function that tabulates outliers, but that display does not provide detailed information. Given the very low
percentage of CT4 related records, histograms of the feature relative to a specific cover type were generated
in order to understand how removing outliers might affect CT4. They also provided some insight into the
utility and possible effects of removing outliers. Appendix B contains the useful charts. All of the continuous
features contained outliers, while Slope, H Dist Hyd, and V Dist Hyd contained extremes. Extreme is the
term SPSS uses for values greater than 5 standard deviations from the mean.

For Elevation, all of the outliers across all cover types are associated with CT7, and CT7’s histogram implies
they can be safely excluded. The same procedure of checking to see which CTs would be affected by removing
extremes and outliers was performed for the other features. The conclusion was that except for Slope, all the
extremes and outliers could be excluded without any consequences. Excluding the outliers of Slope is a bit
uncertain, as a large number of records across the spectrum of cover types would be affected. So that decision
was left open until it was better understood how Slope affected the modeling. Excluding some outliers of
V Dist Hyd affected 24 records for CT4, but that was deemed acceptable. Eliminating outliers based on the
IQR and not standard deviation was also examined; it generally would have resulted in more records being
deleted, but would have had slightly more of an impact on a wider range of cover types. So this decision was
reserved until the utility of eliminating outliers was established.

Another decision made during the project, once the problem became apparent, was to remove records with a
Shade 3 value greater than 248. If Shade 3 was included in the stream in any way, its type would sometimes
change to Typeless and the behavior of the software became inconsistent. The reason for this was finally
traced to a limitation of SPSS which is that the maximum size for any set is 250, not 255. Setting Shade 3 to
a type of continuous would solve this, but it isn’t a continuous variable and using it as a nominal was desired
in certain circumstances. This problem was not immediately apparent, nor where there any obvious warnings
when the entire dataset was processed by reading from the file. Examining the histograms related to Shade
3 showed trimming it should not affect the data significantly.

1.5 Data Pre-processing

Data pre-processing operations (sampling, balancing, and dimensionality reduction) tend to be repeated
throughout the KDD process as necessary depending on the current needs and status. For this study, sampling
was investigated at the beginning of the process. But given the small amount of data and the fact that
balancing was obviously necessary, there was no need to be concerned with reducing the amount of data for
efficiency purposes. Section 2.1 contains the exact details on how and why balancing was done as it pertains
directly to the process of building the decision tree. More advanced alternatives to balancing the dataset to
deal with training the classifier properly were not investigated.

The Forest CoverType database is a small one, so the “curse of dimensionality” is not entirely applicable.
But to be thorough and improve the modeling process, various ways of manipulating the features used were
investigated as they still could improve accuracy. These ways include the following: feature construction,
feature discretization, and feature selection. Feature construction has already been mentioned; the process
of merging the 40 soil types to one feature is a classic example. Examining the other features revealed the
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only other logical action to take would be to see how the three hillshade features might be merged into one;
SPSS’s correlation functionality returned Strong, Medium, and Weak relationships between the three. A weak
correlation was unexpected, but this could be explained by variations in the terrain that affect the amount of
sunlight at a certain spot. So merging Shade 3 and Shade 9 was considered, but left until further insight into
the modeling process was acquired. The other two methods of reducing dimensionality, feature selection and
feature discretization, are discussed in Section 2. Like balancing, they were part of the process of modeling
the decision tree and investigating k-means clustering, so it is more appropriate to discuss them in context.

2 Predicting the Forest Cover

There is a wide variety of machine learning classifiers available and no definitive or absolute guidelines on how
to construct them. Only two approaches were investigated in this study: decision trees and k-means clustering.
The rationale for these choices, the process followed, and the details of features used and parameter settings
are described in the following sections.

2.1 Decision Tree Models

Based on how there were noticeable boundaries and a few patterns in the numbers relative to each cover type
for some features (tables A.2 and A.3), decision trees were a logical first choice as a classifier. The boundaries
and patterns ought to aid the tree in making decisions, if the training goes well. The main benefit of decision
trees is that the rules created are easily understood; trees are not black boxes like neural networks. They
can also deal with different mixtures of feature types, e.g. all features don’t have to be categorical ones. A
disadvantage is that they can become big and complex, so there are two goals. The first is to find the right
combination of as few as possible features that generates the smallest tree. The second goal is to do so without
sacrificing an unacceptable amount of accuracy in its predictions.

The first decision made was how to partition the dataset into training, testing, and validation subsets. Three
subsets were used instead of train plus test because the validation subset was used in the pruning process.
Pruning a decision tree helps improve accuracy, combatting overfitting that is a characteristic of overly complex
trees. A few different partitioning schemes were investigated (60-20-20, 70-15-15, 75-15-10), but there were
no clear signs that one scheme was preferable to the others.

The next decision was to decide upon an algorithm. SPSS Modeler supports the following: CART, CHAID,
and C5.0. Fortunately, SPSS also has a Auto Classifier node for investigating multiple models in a single run.
However, CHAID consistently failed to build a model in these initial tests. For all, a setting of a maximum
depth of 50 was used and pruning enabled, when applicable. The SPSS default pruning severity of 75% was
used.

Three balancing schemes were used: oversampling (based on the minority class, CT4), undersampling (based
on CT2), and a mixture. For the first two, the percentage increases suggested by SPSS for each cover type
was used. This resulted in a training set composed of the same number of records for all cover types. But
it was apparent that undersampling might not work well as it drastically reduced the number of CT1 and
CT2 related records. This could result in an information loss impacting training - related patterns in the
features might not be captured because no relevant records were selected. Therefore a mixture of under and
oversampling was also used to investigate how a better, though still imbalanced, training set might affect
results.

The baseline model built used all features but Cover type; the C5.0 algorithm resulted in a model of 99.4%
overall accuracy, while the CART algorithm only achieved 68.8%. But the depth of the C5.0 tree was 43 levels
along with using 12 features. To see if outliers were a factor in the number of levels, a dataset with them
removed was then used. The resulting tree was 40 levels deep, so outliers were not a significant factor relating
to rules. But they still could be removed based on the preliminary data analysis and doing so reduced the
amount of data to process to some extent.
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Next, steps were taken to gauge the impact of a single feature when it was included or removed from the
model. 12 data streams were built in a serial process, where one feature was removed and the previous
one replaced. Other parameters were not varied during this process. Removal of Elevation, H Dist Road,
and H Dist FP showed a noticeable drop in accuracy relative to the shifts for other features. The effects of
removing H Dist Hyd and Soil Type also were noticeable, but slightly less. Removing other features did not
have an appreciable effect, or in the case of CART, improved accuracy.

The effect of different balancing schemes was then investigated. As suspected, when cover types other than
CT4 were undersampled, accuracy dropped to around 90% for all variations of C5.0 and around 68% for the
CART algorithm. The same general effect of removing each feature one by one was also seen in subsequent
tests, but the drops were more significant than when the oversampling balancing configuration was used. The
third balancing configuration was a more complex one designed to undersample just CT1 and CT2 while
oversampling the other classes in order to achieve a more equitable balance. Overall, the results were much
the same as for the first series of tests - accuracy dropped a little from the baseline, to 98% which is better
than for balancing run 2, and removal of the same features showed the same effects. The number of levels of
the tree tended to drop as well, compared to the first set of runs. This indicates information was being lost
when the CT1 and CT2 classes were too undersampled, so a balancing scheme that oversampled CT4 was
used from this point forward.

The next decision was to use a forward selection process to determine the smallest set of features that resulted
in acceptable accuracy. Starting with a base set of just Elevation, other features were added one at a time to
the current set to determine how accuracy, on the test set, might improve. The feature resulting in the largest
improvement was then added and the loop started over. The final feature set was Elevation, H Dist Road,
H Dist FP and Soil Type. To add another feature beyond this point would only result in an improvement in
testing of less than 2%, which wouldn’t be worth the cost of making the model more complex.

Whether to discretize the continuous features was the next decision. After some initial experimentation,
there was a realization that it would not be generally beneficial. This is based on an interpretation of the
histograms and boxplots. The extent of values for each cover type, for each feature, overlap noticeably. If the
method of discretization was not chosen carefully, then the maximum or minimum value for a feature for a
specific cover type could be placed in the same ‘block’ as values for another cover type. Because the decision
tree can not divide this block any further, classification errors for some of the records would then be certain.
Discretization in essence reduces the resolution; this will prevent the decision tree from making a split that
it normally could on continuous data. If discretization was essential, then customized schemes or methods
based on the statistical properties of the feature values would be required. SPSS does not provide such a
feature and more extensive data analysis would be needed as well.

Examining the statistics of the results in detail revealed a noticeable variation in the accuracy levels per
cover type in testing. The percentage ranged from 72% (CT4) to 93% (CT7), so misclassification costs were
enabled for three cover types to see if they could improve results. Weights of 5 to 10 were set, iteratively, for
misclassification of CT4, CT5, and CT6, but this did not result in much improvement. CT4 was persistently
misclassified as CT3 or CT6; the boxplots are evidence how the features values associated with CT4 are
frequently a subset of CT3 or CT6 values. Of the features left, adding Shade 9 resulted in the greatest
increase in accuracy (78%).

But given the baseline model’s accuracy for classifying CT4 was 92%, this lead to the conclusion a composite
feature might be the solution to improving accuracy as needed for specific cover types. By encapsulating
the information of several features within one, the cost of adding more features would be reduced while in-
creasing accuracy. Various mathematical formulas were used to combine Shade 9, Aspect, Wilderness Area,
V Dist Hyd, and H Dist Hyd. The simplest feature combination was Shade 9 times V Dist Hyd, which im-
proved the accuracy rate for the three cover types to around 84%. The partitioning scheme was then changed
from 60-20-20 to 70-15-15, too see if more training might be useful. The overall accuracy not only increased
to 95.8%, but the accuracy rate for individual cover types all improved such that they were from 92% to 97%.
It was decided at this point the model had been sufficiently tuned to acceptable levels.
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10-fold cross validation was now enabled so that a variety of training, test and validation sets could be used
to evaluate the generalization error of the model. Unfortunately the previous results did not persist; the
accuracy rate for the three cover types in question dropped back to around 81% to 84%. The accuracy for
the four other cover types stayed at around 93% to 96%. These results were deemed more than sufficient
however, so work on the next approach began. Throughout the entire process, the number of levels of each
decision tree built was monitored. It ranged from 38 to 43; there was no specific settings change that greatly
or consistently improved this measure. As for more detailed information about the tree, every attempt to view
it in SPSS and the information on how branches were created failed. SPSS Modeler would typically become
unresponsive. This may be due in part to the fact SPSS Modeler was running on Windows 10 in a virtual
machine, but there was sufficient memory and processing power that this should not have been a concern.

2.2 Clustering

The other approach taken to investigate predicting forest cover types was clustering; in general, the algorithm
works by grouping data points and taking measures of how far apart they are from others in the same cluster.
More cohesive clusters imply the data points in that cluster are more similar to each other than to other
clusters’. On what basis the cluster was created (the features used) then provides some insight into the data.

K-means clustering is a version that requires just one main parameter: k, the number of clusters. The
downside of clustering is that it is a random process, so many attempts to find a suitable set of clusters
may be necessary. It is also not guaranteed to return useful results. Eliminating outliers in the data can
be beneficial in preventing issues; their presence will affect results if they are used for the initial starting
points of the clustering process. After outliers were eliminated, the next pre-processing step taken was to
discretize the continuous features such as Elevation. The techniques for doing so that were used were equal
width, binning by number of standard deviations, and binning based on the target feature (the cover type).
Different techniques were used for different features as they have different distributions relative to the cover
type. Discretization provides more of an advantage in clustering than with decision trees; the “resolution”
of the data is lessened and so theoretically a decision boundary would be easier to determine. Accuracy in
determining the cover type for each data point is not a goal, but finding how features best map to cover type
is and so precision is not as important.

As clustering involves repeated iterations, the next decision made was to reduce the amount of data exam-
ined by using only 10% of it. The motivation was to hopefully find a set of features that resulted in good
performance, i.e. clusters were found that closely corresponded to one or more of the forest cover types. The
assumption was this feature set should still result in good performance when the entire dataset was used.
Another decision was that since the k-means algorithm is affected by class imbalance (it assumes clusters are
the roughly the same size), there might be a need to balance the dataset. So both the unbalanced dataset
and datasets balanced on each cover type were used.

The final variable was that there is no definitive algorithm for determining the best value of k. Instead, there
are heuristic methods that always involve repeated iterations while evaluating some measure of quality. SPSS
Modeler reports the silhouette of the clustering, so this was used as the metric for evaluating performance.
It is a measure of how closely a data point matches to data within the same cluster and not to data not in
the cluster. Higher values closer to 1 imply more data has been placed in the correct clusters. However, the
question was is there any way to create a cluster (i.e. a set of features) that fully describe a cover type versus
the other types? This is different than trying to find the best set of clusters for all the data. So the silhouette
measure was just used as feedback.

A baseline was established with these settings: 10% of the data, unbalanced, continuous features discretized
by equal width, and all features used. The values of k varied from 2 to 15. Examining the graphics SPSS
provides revealed that of the input features ranked in importance, only Elevation and the Wilderness Area
had a distinct delineation in how values were associated with a cluster; the spread of the other features was
across the entire spectrum for both clusters.

7



This lead to examining the histograms and boxplots in Appendix B for possible insights. If each feature is
metaphorically thought of as a ‘dimension’, then the graph of how a particular CT value is spread across
the range of that dimension could be used to gauge what features would actually be useful in clustering. For
instance, if a particular CT is only within a certain band of values, then there is a clear boundary line between
‘that’ and ‘not that’. A CT that is spread across the entire range means that dimension is not going to be
useful for discriminating between that CT and another CT. This can be easily seen in examining the graphs
for Aspect; all CTs are spread across the entire range of Aspect. Therefore it will be of no value in clustering
when trying to understand the relationships between CT and the other features. This insight explains why
Wilderness Area and Elevation were useful. Figure A.13 shows how CT4 is associated with only one Area
(WA4) and CTs 5, 6, and 7 are in just two Areas. Examining the Elevation graphs (Figures B.1 and B.6)
shows a lot of overlap in terms of the spread of a CTs, but there are some definite boundaries: CT4 is only
between 2000 and 2500 while CT5 is from 2500 to 3000. So clustering that uses Elevation would or could
possibly put CT4 and CT5 into two distinct clusters.

Based on this intuition, the graphs in Appendix B were analyzed further. Elevation, Wilderness Area, Soil
Type, and H Dist Road were chosen as the subset of features to use in the next iteration. The SPSS stream
was reconfigured; no other settings were changed. The silhouette measure of the best model jumped from
0.224 to 0.619 (4 clusters were found). Examining the details revealed the only features used were Elevation
and Wilderness Area. However, the reduction in dimensionality from 13 features to 2 should be considered
a factor as well as the selection of useful features. Fewer dimensions allows the boundary of a cluster to be
more definitive; there are less opportunities for exceptions in the feature values to throw off the assignment
of points to a cluster.

SPSS has facilities for graphing the results from a model in different ways; using this functionality revealed
that all the data could be grouped into four clusters - Wilderness Areas 1 and 3 were associated with the
middle set of Elevation values while Wilderness Areas 4 and 2 were associated with the lower and higher
Elevations respectively (see Figures B.16 to B.23). But the Cover Types were still located in multiple clusters
(Figure B.24) except for CT4 which is exclusively in Wilderness Area 4.

Also at this point, the importance of a balanced dataset and the use of more data became apparent. A
balanced dataset would change the percentage of records associated with a specific cover type and so affect
the distribution or density of points that ideally would be placed in the same cluster. Because the data is
predominantly CT1 and CT2 data, a cluster that defines CT3 well, for instance, could get overlapped by a
larger cluster. Hierarchical clustering may be a way to investigate this hypothesis. As for more data, it might
improve the likelihood of data points with the right combination of feature values being found. These data
points would better establish a cluster boundary in the multidimensional feature space being examined.

But more data may cause issues as well. This can be seen in one run that used a balanced dataset based on
CT4. Figure B.25 shows how several CTs were entirely within one cluster. 9 features were used. But when
the entire dataset was used, the CTs were spread across the different clusters. Only the unbalanced dataset
was used thereafter as the goal was to find a set of features that could reliably describe all data, not just a
subset of it.

After many iterations, the conclusion was only CT4 could be associated with a single cluster when Wilderness
Area was used as a feature. CT5 and CT6 frequently ended up in just two clusters; Figure B.24 is an example
of typical results. This can be explained by examining table A.3 which shows how Wilderness Area can be
a strong determinate of how records are assigned to a cluster. Elevation, as explained, also was a strong
determinate of how CTs might be associated with a cluster. If Wilderness Area and Elevation were left out
from the feature set, then the models generated may have silhouette measures up to 0.6 but the distribution
of cover types amongst the clusters showed no clear biases. These is because apparently no combination of
other features can mark a clear boundary around the entire set of records for a particular cover type. To test
this theory further, CT1 and CT2 records were removed from the dataset and a clustering analysis done to
see if any set of features would result in the other cover types clustering in the desired fashion. But again,
they were always split amongst the various clusters except for CT4.
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3 Analysis of Cottonwood & Willow Forest Cover

Areas with Cottonwood and Willow Forest Cover (CT4) require specialized management, so another goal of
this study was to determine if there were any patterns in the data specific to CT4. If so, these patterns could
inform the USFS about ways to improve management strategies or allocation of resources.

The first approach taken was to examine the histograms in Appendix B for any obvious patterns relative to
CT4. It was evident that CT4 is exclusively associated with Wilderness Area 4 (WA4, Cache la Poudre).
So any changes in management should concern itself with the department that manages that area. Another
obvious conclusion is that more data for CT4 cells should be gathered, if possible; more data on WA4 would
help with future analysis as points for WA1 and WA2 dominate the dataset.

CT4 was also predominately associated with a H Dist Hyd value under 50 feet, and there was also a strong
bias for values of V Dist Hyd to be under 25 feet. These imply cottonwoods and willows require or prefer
easy access to water. A Google search for information on these trees confirmed this hypothesis. It also
revealed cottonwoods and willows prefer more sun, which can be somewhat inferred from the histograms for
the Shade features for CT4. The Aspect histogram also reveals a bias for CT4 cells to be oriented in an
easterly direction (from 75 to 150 degrees). This meshes with the theory that CT4 cells receive more sunlight.
Finally, CT4 cells are very predominantly under 1500 feet from a road and CT4 cells are the closest in terms
of the maximum distance from a firepoint which should be noted. These inferences were verified by examining
the web diagrams relating Cover Type to other features. Figure B.6 is an example that shows how CT4 is
predominantly related to Aspect Bin 2 and 3 (bin width was 75 degrees).

The next approach taken to find any more complex patterns was the use of association rules. Association
rules work with only categorical features, so the continuous features were binned as they had been for the
clustering analysis. Despite numerous runs, no association rules were found using the Apriori functionality
offered by SPSS. Upon analysis, the reason for this became evident. The rules being looked for are of the “if
X, then CT is 4” variety. They may exist, but if the chances X leads to other cover types relatively as much,
then the confidence level of that rule will be impacted. The support for rules pertaining to CT4 will also be
fairly small given how little data there is for CT4 compared to CT1 and CT2.

The third approach taken was to use a decision tree to deduce rules specific to CT4. The initial conditions used
were: continuous features were binned, partition of 80% training, 20% test, dataset balanced by oversampling
CT4, all features selected. The difference between this phase and the first is that a decision tree that can
classify all cover types reliably was not the goal; instead, accurate rules that relate features to CT4 were desired.
So a decision tree that misclassifies other cover types is acceptable as long as the accuracy of classifying CT4
cells correctly appreciates. Therefore, the misclassification costs for incorrectly classifying CT4 were increased
to 5.0. This initial baseline resulted in a model that had 266 rules, and was 80.9% accurate in classifying
CT4. Only CT3 and CT6 cells were misclassified.

The first sets of tests investigated the impact of binning and the relative importance of the continuous features.
Replacing each feature with its unbinned version, one by one, revealed the model was most sensitive to a change
in Elevation; the CT4 specific accuracy improved from 80.9% to 81.8%. But unbinned version of the other
features did not improve accuracy substantially or decreased it slightly. For every model, only CT3 and CT6
cells were misclassified; examining the histogram again lead to the conclusion Slope and the Shade features
could be the reason for the misclassification.

The next set of tests was to determine if the feature set size could be decreased. A backwards selection process
was used; each loop consisted of building multiple models in parallel where only one feature was removed from
the baseline. The model that had the highest performance was chosen as the baseline for the next loop and
the process stopped when there were no improvements. Elevation, Wilderness Area and Soil Type were not
removed in this process; they are strongly correlated to CT4 as preliminary investigations had shown.

The following is a list of the features removed (in order) and the resulting improvement in accuracy: (Shade 3,
82.4%), (Slope, 83%), and (Shade 9, 84.9%). The features left (Aspect, Shade12, H Dist Hyd, V Dist Hyd,
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H Dist Road, and H Dist FP) were all marked in the initial examination as probably being relevant to CT4.
So it is not surprising they are in the final set. A check was done by removing Soil Type and Wild Area from
the feature set; the accuracies decreased as expected (79.8% and 81.4%).

The next step taken was to increase the misclassification costs to 10.0; this was to see if the persistent failure
to classify some CT3 and CT6 data could be changed. The accuracy dropped to 84.63%; raising or lowering
the cost did not have any appreciable positive effect. Alternative options such as varying how features were
discretized were not investigated further; the relationship between CT4 and features had been established,
leading to reasonable conclusions about management strategies. The exact set of rules that the decision tree
created would be of no use towards this end, especially considering they would change for every new model.

4 Recommendations and Conclusions

Based on the results, decision trees are a viable method for predicting the type of forest cover and for describing
patterns in the data that can inform management decisions. An accuracy of up to 93% was achieved for the
separate cover types. This is a large improvement on the previous study, which used neural networks, achieving
only an accuracy of 70%. The features found to be useful for this type of model are: Elevation, H Dist Road,
H Dist FP, Soil Type and a combination of Shade 9 times V Dist Hyd. Combining the two features was a
key improvement that allowed three cover types to be classified more accurately. Further feature engineering
should be investigated given how cover types overlap in terms of the range of values for different features.

As for patterns related to Cover Type 4, several were found. First, cottonwood & willow forest cover is
exclusively in the Cache la Poudre wilderness area. The department responsible for that area should be
tasked with improving its management strategies. Cottonwood & willow trees tend to be located close to
water sources and to be close to access roads, so the logistical aspects of managing these cells should also take
that into account. Finally, the more complex patterns in the data associated with CT4 were a combination of
the horizontal and vertical distance to a water source, the distance to a road, and the distance to the nearest
firepoint. The firepoint distance turned out to be a important factor that distinguishes CT3 and CT6 from
CT4; CT4 is the closest type of cell in that its maximum distance is the minimum amongst all cover types.
This implies that cottonwood and willow cells are more at risk to wildfire and so appropriate measures should
be taken to forestall that.

The other approach investigated, that of clustering, was not as successful; clusters consisting of just one cover
type could not be created. This is due to the amount of overlap in the extent of a feature’s range that each
cover type has, relative to other cover types. Because of this overlap, clustering could not determine a definite
decision boundary and so data for multiple cover types were placed in the same cluster. However, Wilderness
Area and Elevation were shown to be somewhat useful for distinguishing one subset of cover types from the
other subset. Another reason for this failure is the class imbalance, e.g. the amount of data related to CT1
and CT2 is excessive compared to the other CTs. CT1 and CT2 data also is very spread across the whole
extent of several features. Until more data is gathered to reduce the class imbalance, clustering should not
be considered as useful as decision trees.

The first recommendation for future research is that more data should be collected on cover types other than
CT1 and CT2. The quality of the existing dataset is more than adequate as it is very clean, with no problems,
and with a low percentage of outliers. But a more equitable class balance in the dataset will only assist in
future studies. The second is that other possible features relevant to forest cover type should be researched.
If a feature is found that more clearly can delineate one cover type from the others, or a subset, then future
data mining efforts will be even more precise and accurate.
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A Data Dictionary

Two files were provided for this study: ‘covtype.info’ and ‘covtype.csv’. ‘covtype.info’ describes the contents
of the ‘covtype.csv’ database and is summarized here for the reader; specific details on the original study that
used this data can be found there. ‘covtype.info’ contains most of a data dictionary, but the details were
double checked and expanded on to be thorough in this investigation.

Name of Database: Forest CoverType data

Copyright Information

Original owners of database

Remote Sensing and GIS Program
Department of Forest Sciences
College of Natural Resources
Colorado State University
Fort Collins, CO 80523

Contact
Jock A. Blackard <jblackard@fs.fed.us> or
Dr. Denis J. Dean <denis.dean@utdallas.edu>
for further information

NOTE: Reuse of this database is
unlimited with retention of copyright notice for
Jock A. Blackard and Colorado State University

Database publicly released August 1998 by

Jock A. Blackard <jblackard@fs.fed.us>
GIS Coordinator
USFS - Forest Inventory & Analysis
Rocky Mountain Research Station
507 25th Street
Ogden, UT 84401

Dr. Denis J. Dean <denis.dean@utdallas.edu>
Professor
Program in Geography and Geospatial Sciences
School of Economic, Political and Policy Sciences
800 West Campbell Rd
Richardson, TX 75080-3021

Dr. Charles W. Anderson <anderson@cs.colostate.edu>
Associate Professor
Department of Computer Science
Colorado State University
Fort Collins, CO 80523 USA

This database contains data about four wilderness areas located in the Roosevelt National Forest of northern
Colorado. The forest cover type for the 30m by 30m cells was obtained from the Region 2 RIS. Other data
was obtained from US Geological Survey and USFS databases.

There were 581,012 records in the database.
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1 Summary of Features

Total Number of Features: 55

Table A.1: Features of the Forest CoverType Database

Feature Type Units Description

Elevation continuous meters ground elevation

Aspect continuous azimuth aspect in degrees

Slope continuous degrees slope of surface

H Dist Hyd continuous meters horizontal distance to nearest surface water features

V Dist Hyd continuous meters vertical distance to nearest surface water features

H Dist Road continuous meters horizontal distance to nearest roadway

Shade 9 ordinal 0 to 254 hillshade index at 9am, summer solstice

Shade 12 ordinal 0 to 254 hillshade index at noon, summer solstice

Shade 3 ordinal 0 to 254 hillshade index at 3pm, summer solstice

H Dist FP continuous meters horizontal distance to nearest wildfire ignition points

Wild A 1 ordinal 0 or 1

Wild A 2 ordinal 0 or 1 binary variables indicating which of the 4 wilderness areas

Wild A 3 ordinal 0 or 1 the cell is present in - only one should be set per record

Wild A 4 ordinal 0 or 1

ST 1

through ordinal 0 or 1 40 binary variables indicating the presence of a particular soil type

ST 40

Cover type categorical 1 to 7 forest cover type designation (the feature to be predicted)

2 Issues

The original dataset is a somewhat large one, about 75 MB, and IBM SPSS Modeler v15 has software bugs
rendering it incapable of handling this amount. Once it was determined the four Wilderness Area and 40
Soil Type features were a type of bitfield encoding, steps were taken to reduce these to just two categorical
features (Wilderness Areas and Soil Types). A short Python program (B.1) was written to process the original
CSV file and verify that for each record in the database, only 1 of the four Wilderness Area fields was set, as
well as only 1 for the 40 Soil Type fields. No instances of all zeros were detected either or records with null
or invalid values. The Python program then transformed the records to reduce these features into the two
new categoricals (where the value was the index number of the original field that was set to 1). The resulting
dataset is about 26 MB.

After the derived dataset was loaded into SPSS Modeler, its functionality was used to quickly determine if
there were null or missing data, problematic records, or unusual or invalid values present. No other basic
quality related problems were found.
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3 Feature Information

3.1 Cover type

The type of forest cover the cell has been mapped to.

Type: integer, categorical

Category Tree Type Occurrences % of total

1 Spruce/Fir 211840 36.46
2 Lodgepole Pine 283301 48.76
3 Ponderosa Pine 35754 6.15
4 Cottonwood/Willow 2747 0.473
5 Aspen 9493 1.63
6 Douglas-fir 17367 2.99
7 Krummholz 20510 3.53

An important thing to note is the fact most of the data is associated with CT1 and CT2, while CT4 is very
underrepresented. This is a clear sign of a need to balance the data properly in the training set, otherwise
random sampling procedures may not select enough data associated with CT4 for adequate training.

Figure A.1: Bar chart of Cover Type

Table A.2: Soil Types associated with Cover Types

Cover Type Soil Types Present

1 4,8,9,10,11,12,13,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31

2 2,3,4,6,7,8,9,10,11,12,13,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31

3 1,2,3,4,5,6,10,11,13,14,16,17,20

4 1,2,3,4,5,6,10,11,14,16,17

5 2,4,10,11,13,16,17,18,19,20,23,24,26,28,29,30,31

6 1,2,3,4,5,6,10,11,13,14,15,16,17,20,23,24,31

7 4,13,19,21,22,23,24,27,29,30,31
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Table A.3: Minimum and Maximum Values of Features per Cover Type

Feature CT1 CT2 CT3 CT4 CT5 CT6 CT7

Elevation (2466,3686) (2142,3433) (1859,2899) (1988,2526) (2482,3011) (1863,2900) (2868,3858)

Aspect (0,360) (0,360) (0,360) (0,359) (0,359) (0,360) (0,360)

Slope (0,56) (0,66) (0,50) (0,46) (0,51) (0,54) (0,51)

H Dist Hyd (0,1200) (0,1397) (0,726) (0,551) (0,1100) (0,644) (0,1323)

V Dist Hyd (-156,431) (-173,601) (-134,312) (-25,270) (-134,265) (-126,288) (-84,412)

H Dist Road (0,6632) (0,7117) (0,3436) (67,1702) (30,5206) (0,3092) (451,5463)

Shade 9 (0,254) (0,254) (46,254) (127,254) (126,254) (0,254) (80,254)

Shade 12 (74,254) (0,254) (93,254) (137,254) (95,254) (90,254) (98,254)

Shade 3 (0,254) (0,254) (0,251) (0,232) (0,236) (0,248) (0,229)

H Dist FP (0,7118) (0,7173) (0,2888) (0,1921) (42,6321) (0,2940) (0,4589)

Wild A 1 (0,1) (0,1) (0,0) (0,0) (0,1) (0,0) (0,1)

Wild A 2 (0,1) (0,1) (0,0) (0,0) (0,0) (0,0) (0,1)

Wild A 3 (0,1) (0,1) (0,1) (0,0) (0,1) (0,1) (0,1)

Wild A 4 (0,0) (0,1) (0,1) (1,1) (0,0) (0,1) (0,0)

3.2 Elevation

Elevation is the evaluation of the ground in meters, sea level assumed to be 0. Given the initial histogram,
the extent of the elevation range for each cover type was determined, revealing definite limits for types 3 to
7 (see Figure B.1). This implies elevation will be useful as a feature.

Type: integer, continuous

Statistic Value
Minimum 1859
1st Quintile 2809
Mean 2959.36
Median 2996
Mode 2968
3rd Quintile 3163
Maximum 3858
Std Deviation 279.98

Figure A.2: Histogram of Elevation Per Cover Type
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Figure A.3: Elevation Extents Per Cover Type

3.3 Aspect

Aspect is the compass direction that the ground faces, thus measured in degrees azimuth. The aspect can
have a strong influence on ground temperature and thus the microclimate of that area.

Type: integer, continuous

Statistic Value
Minimum 0
1st Quintile 58
Mean 155.66
Median 127
Mode 45
3rd Quintile 260
Maximum 360
Std Deviation 111.91

Figure A.4: Histogram of Aspect Per Cover Type
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3.4 Slope

The ground slope in degrees. The appearance of periodic gaps in the data should be noted.

Type: integer, continuous

Statistic Value
Minimum 0
1st Quintile 9
Mean 14.10
Median 13
Mode 11
3rd Quintile 18
Maximum 66
Std Deviation 7.49

Figure A.5: Histogram of Slope Per Cover Type

3.5 Horizontal Distance To Hydrology (H Dist Hyd)

The horizontal distance measured, in meters, to the nearest surface water features. It is not stated, but was
assumed to be from the center of the cell.

Type: integer, continuous

Statistic Value
Minimum 0
1st Quintile 108
Mean 269.43
Median 218
Mode 30
3rd Quintile 384
Maximum 1397
Std Deviation 212.55

Figure A.6: Histogram of Horizontal Distance to Hydrology Per Cover Type

16



3.6 Vertical Distance To Hydrology (V Dist Hyd)

The vertical distance measured, in meters, to the nearest surface water features. It is not stated, but was
assumed to be from the center of the cell.

Type: integer, continuous

Statistic Value
Minimum -173
1st Quintile 7
Mean 46.42
Median 30
Mode 0
3rd Quintile 69
Maximum 601
Std Deviation 58.3

Figure A.7: Histogram of Vertical Distance to Hydrology Per Cover Type

3.7 Horizontal Distance To Roadways (H Dist Road)

The horizontal distance measured, in meters, to the nearest roadway. It is not stated, but was assumed to be
from the center of the cell.

Type: integer, continuous

Statistic Value
Minimum 0
1st Quintile 1106
Mean 2350.15
Median 1997
Mode 150
3rd Quintile 3328
Maximum 7117
Std Deviation 1559.26

Figure A.8: Histogram of Horizontal Distance to Road Per Cover Type
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3.8 Hillshade 9am (Shade 9)

An index from 0 to 255 reflecting the amount of shade at 9am on the summer solstice, i.e. the amount of illu-
mination. It is not stated how this abstract number relates to the actual amount of sunlight, but presumably
higher values correlate to more sunlight.

Type: integer, ordinal

Statistic Value
Minimum 0
1st Quintile 198
Mean 212.15
Median 218
Mode 226
3rd Quintile 231
Maximum 254
Std Deviation 26.77

Figure A.9: Histogram of 9AM Shade Index Per Cover Type

3.9 Hillshade Noon (Shade 12)

An index from 0 to 255 reflecting the amount of shade at noon on the summer solstice, i.e. the amount of
illumination. It is not stated how this abstract number relates to the actual amount of sunlight, but presum-
ably higher values correlate to more sunlight.

Type: integer, ordinal

Statistic Value
Minimum 0
1st Quintile 213
Mean 223.32
Median 226
Mode 228
3rd Quintile 237
Maximum 254
Std Deviation 19.77

Figure A.10: Histogram of Noon Shade Index Per Cover Type

3.10 Hillshade 3pm (Shade 3)

An index from 0 to 255 reflecting the amount of shade at 3pm on the summer solstice, i.e. the amount of
illumination. It is not stated how this abstract number relates to the actual amount of sunlight, but presum-
ably higher values correlate to more sunlight. Unlike the other two Shade features, this shows a normal type
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distribution. Given all 3 Shade features are related by some formula involving the angle of the sun and the
ground aspect, they are a candidate for feature reduction in some way.

Type: integer, ordinal

Statistic Value
Minimum 0
1st Quintile 119
Mean 142.53
Median 143
Mode 143
3rd Quintile 168
Maximum 254
Std Deviation 38.27

Figure A.11: Histogram of 3PM Shade Index Per Cover Type

3.11 Horizontal Distance To Fire Points (H Dist FP)

The horizontal distance measured, in meters, to the nearest wildfire ignition point. It is not stated, but was
assumed to be from the center of the cell.

Type: integer, continuous

Statistic Value
Minimum 0
1st Quintile 1024
Mean 1980.29
Median 1710
Mode 618
3rd Quintile 2550
Maximum 7173
Std Deviation 1324.2

Figure A.12: Histogram of Horizontal Distance to Firepoint Per Cover Type

3.12 Wilderness Area 1 to 4 (Wild A 1 to Wild A 4)

These four features categorize what wilderness area the cell is part of.

Type: binary value, 0 denoting the cell is not within the specified wilderness area, and 1 denoting that it is

There were no rows containing more than one 1 in these columns, or missing or invalid values, therefore the
features were transformed into a single categorical for the purpose of data reduction. An important thing to
note is that Cover Type 4 is only present within Area 4 which has implications for sampling and balancing.
Cover types 5 and 7 are also associated with only 2 Areas, so this will be a useful feature.
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Area Number Description Occurrences % of total

1 Rawah Wilderness Area 260796 44.88
2 Neota Wilderness Area 29884 5.14
3 Comanche Peak Wilderness Area 253364 43.6
4 Cache la Poudre Wilderness Area 36968 6.36

Figure A.13: Bar chart of Wilderness Area Types Per Cover Type
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3.13 SoilType 1 to 40 (ST 1 to ST 40)

These 40 features indicate the type of soil (USFS Ecological Landtype Units (ELUs)). No cell had multiple
soil types associated with it so these features were transformed into a single categorical. No clear patterns to
the data immediately stand out.

Type: binary value, 0 denoting the cell is not associated with that soil type, and 1 if it is

Soil Type Occurrences % of total Soil Type Occurrences % of total

1 3031 0.521 21 838 0.144
2 7525 1.295 22 33373 5.743
3 4823 0.830 23 57752 9.939
4 12396 2.133 24 21278 3.662
5 1597 0.274 25 474 0.081
6 6575 1.131 26 2589 0.445
7 105 0.018 27 1086 0.186
8 179 0.030 28 946 0.162
9 1147 0.197 29 115247 19.835
10 32634 5.616 30 30170 5.192
11 12410 2.135 31 25666 4.417
12 29971 5.158 32 52519 9.039
13 17431 3.000 33 45154 7.771
14 599 0.103 34 1611 0.277
15 3 0.000 35 1891 0.325
16 2845 0.489 36 119 0.020
17 3422 0.588 37 298 0.051
18 1899 0.326 38 15573 2.680
19 4021 0.692 39 13806 2.376
20 9259 1.593 40 8750 1.505

The tables describing the ELU code and the soil types have been included for easy reference.

Figure A.14: Bar chart of Soil Types Per Cover Type
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Soil Type USFS ELU Code Description

1 2702 Cathedral family - Rock outcrop complex, extremely stony
2 2703 Vanet - Ratake families complex, very stony
3 2704 Haploborolis - Rock outcrop complex, rubbly
4 2705 Ratake family - Rock outcrop complex, rubbly
5 2706 Vanet family - Rock outcrop complex complex, rubbly
6 2717 Vanet - Wetmore families - Rock outcrop complex, stony
7 3501 Gothic family
8 3502 Supervisor - Limber families complex
9 4201 Troutville family, very stony
10 4703 Bullwark - Catamount families - Rock outcrop complex, rubbly
11 4704 Bullwark - Catamount families - Rock land complex, rubbly
12 4744 Legault family - Rock land complex, stony
13 4758 Catamount family - Rock land - Bullwark family complex, rubbly
14 5101 Pachic Argiborolis - Aquolis complex
15 5151 unspecified in the USFS Soil and ELU Survey
16 6101 Cryaquolis - Cryoborolis complex
17 6102 Gateview family - Cryaquolis complex
18 6731 Rogert family, very stony
19 7101 Typic Cryaquolis - Borohemists complex
20 7102 Typic Cryaquepts - Typic Cryaquolls complex
21 7103 Typic Cryaquolls - Leighcan family, till substratum complex
22 7201 Leighcan family, till substratum, extremely bouldery
23 7202 Leighcan family, till substratum - Typic Cryaquolls complex
24 7700 Leighcan family, extremely stony
25 7701 Leighcan family, warm, extremely stony
26 7702 Granile - Catamount families complex, very stony
27 7709 Leighcan family, warm - Rock outcrop complex, extremely stony
28 7710 Leighcan family - Rock outcrop complex, extremely stony
29 7745 Como - Legault families complex, extremely stony
30 7746 Como family - Rock land - Legault family complex, extremely stony
31 7755 Leighcan - Catamount families complex, extremely stony
32 7756 Catamount family - Rock outcrop - Leighcan family complex, extremely stony
33 7757 Leighcan - Catamount families - Rock outcrop complex, extremely stony
34 7790 Cryorthents - Rock land complex, extremely stony
35 8703 Cryumbrepts - Rock outcrop - Cryaquepts complex
36 8707 Bross family - Rock land - Cryumbrepts complex, extremely stony
37 8708 Rock outcrop - Cryumbrepts - Cryorthents complex, extremely stony
38 8771 Leighcan - Moran families - Cryaquolls complex, extremely stony
39 8772 Moran family - Cryorthents - Leighcan family complex, extremely stony
40 8776 Moran family - Cryorthents - Rock land complex, extremely stony

ELU First digit: climatic zone Second digit: geologic zones
1. lower montane dry 1. alluvium
2. lower montane 2. glacial The third and fourth ELU digits are unique
3. montane dry 3. shale to the mapping unit and have no special
4. montane 4. sandstone meaning to the climatic or geologic zones.
5. montane dry and montane 5. mixed sedimentary
6. montane and subalpine 6. unspecified
7. subalpine 7. igneous and metamorphic
8. alpine 8. volcanic
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B Miscellaneous Figures

These histograms were generated to see if there were any possibly useful or interesting aspects to each feature
relative to the cover type. The data in these graphs supports preliminary ideas or intuitions about the
database that arose out of the modeling process. Only the useful histograms that revealed something are
included.

Figure B.1: Histogram of Elevations per Cover Type
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Figure B.2: Histogram of H Dist Hyd per Cover Type
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Figure B.3: Histogram of H Dist Road per Cover Type
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Figure B.4: Histogram of H Dist FP per Cover Type
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Figure B.5: Histogram of Aspect per Cover Type

27



These boxplots were generated to confirm ideas based on the histograms and to get a visual sense of the
distribution and range of outliers.

Figure B.6: Boxplots of Elevation versus Cover Type

Figure B.7: Boxplots of Aspect versus Cover Type
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Figure B.8: Boxplots of Slope versus Cover Type

Figure B.9: Boxplots of H Dist Hyd versus Cover Type
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Figure B.10: Boxplots of V Dist Hyd versus Cover Type

Figure B.11: Boxplots of H Dist Road versus Cover Type
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Figure B.12: Boxplots of H Dist FP versus Cover Type

Figure B.13: Boxplots of Shade 3 versus Cover Type
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Figure B.14: Boxplots of Shade 9 versus Cover Type

Figure B.15: Boxplots of Shade 12 versus Cover Type

32



Figure B.16: Elevations in Cluster 1 Figure B.17: Wilderness Areas in Cluster 1

These would be one cluster if it was not for Wilderness Area.

Figure B.18: Elevations in Cluster 2 Figure B.19: Wilderness Areas in Cluster 2
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Figure B.20: Elevations in Cluster 3 Figure B.21: Wilderness Areas in Cluster 3

Figure B.22: Elevations in Cluster 4 Figure B.23: Wilderness Areas in Cluster 4
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Figure B.24: Typical example of clustering results

Figure B.25: Clustering of a balanced dataset

35



This is an example of the web diagrams used to confirm the strength of the relationship between cover types
and specific levels of a feature.

Figure B.26: Cover Type and Aspect Relationships
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C Software Scripts

import sys
import csv
import pdb

wa stat s = [ 0 , 0 , 0 , 0 ]
s t s t a t s = [ 0 ] ∗ 40

out f = open ( ’ condensed . csv ’ , ’w’ )
newCSV = csv . wr i t e r ( out f )

with open ( sys . argv [ 1 ] , ’ r ’ ) as i n f :
coverTypeCSV = csv . reader ( i n f )
rowcount = 0
f o r l i n e in coverTypeCSV :

rowcount = rowcount + 1
i f ( rowcount > 1) :

l i n e [ : ] = map( lambda i : i n t ( i ) , l i n e )
newrow = l i n e [ 0 : 1 0 ]
newdata = [ 0 , 0 ]

i f (sum( l i n e [ 1 0 : 1 4 ] ) == 0) or (sum( l i n e [ 1 0 : 1 4 ] ) > 1) :
p r i n t (”WA ERROR at l i n e { rowcount }”)
newdata [ 0 ] = 100

e l s e :
f o r i in range (10 ,14) :

i f l i n e [ i ] == 1 :
newdata [ 0 ] = i − 9
wa stat s [ i − 10 ] += 1

i f (sum( l i n e [ 1 4 : 5 4 ] ) == 0) or (sum( l i n e [ 1 4 : 5 4 ] ) > 1) :
p r i n t (”ST ERROR at l i n e { rowcount }”)
newdata [ 1 ] = 100

e l s e :
f o r i in range (14 ,54) :

i f l i n e [ i ] == 1 :
newdata [ 1 ] = i − 13
s t s t a t s [ i − 14 ] += 1

newrow += newdata
newrow += [ l i n e [ 5 4 ] ]

e l s e :
newrow = l i n e [ 0 : 1 0 ] + [ ’ Wild As ’ , ’ STs ’ ] + [ l i n e [ 5 4 ] ]

# f i l t e r out Shade 3s g r e a t e r than 248 so SPSS w i l l work
i f rowcount == 1 or newrow [ 8 ] < 249 :

newCSV. writerow (newrow)

p r in t ( s t r ( wa stat s ) )
p r i n t (sum( wa stat s ) )
pe rc s = l i s t (map( lambda i : i / sum( wa stat s ) ∗ 100 , wa stat s ) )
p r i n t ( s t r ( pe rc s ) )

p r i n t ( s t s t a t s )
p r i n t (sum( s t s t a t s ) )
pe rc s = l i s t (map( lambda i : i / sum( s t s t a t s ) ∗ 100 , s t s t a t s ) )
p r i n t ( s t r ( pe rc s ) )

out f . c l o s e ( )
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import sys
import csv
import pdb

min maxs = {} ;
f i e l d s = [ ’ e l eva t i on ’ , ’ aspect ’ , ’ s lope ’ , ’ h d i s t hyd ’ , ’ v d i s t hyd ’ , ’ h d i s t r oad ’ ,

’ shade 9 ’ , ’ shade 12 ’ , ’ shade 3 ’ , ’ h d i s t f p ’ , ’ w i ld a 1 ’ , ’ w i ld a 2 ’ , ’ w i ld a 3 ’ ,
’ w i ld a 4 ’ ]

f o r f l d in f i e l d s :
min maxs [ f l d ] = [ ]
f o r x in range (0 , 8 ) :

min maxs [ f l d ] . append ( [ 1 0 0 0 00 , 0 ] )

cove r type s = [ ]
f o r x in range (0 , 8 ) :

c ove r type s . append ( [ 0 ] ∗ 4 1 )

with open ( sys . argv [ 1 ] , ’ r ’ ) as i n f :
coverTypeCSV = csv . reader ( i n f )
rowcount = 0
f o r l i n e in coverTypeCSV :

rowcount = rowcount + 1
i f ( rowcount > 1) :

l i n e [ : ] = map( lambda i : i n t ( i ) , l i n e )
c t = l i n e [−1]
f o r i in range (0 ,14 ) :

ind = f i e l d s [ i ]
i f min maxs [ ind ] [ c t ] [ 0 ] > l i n e [ i ] :

min maxs [ ind ] [ c t ] [ 0 ] = l i n e [ i ]
i f min maxs [ ind ] [ c t ] [ 1 ] < l i n e [ i ] :

min maxs [ ind ] [ c t ] [ 1 ] = l i n e [ i ]
f o r i in range (14 ,45) :

c ove r type s [ c t ] [ i −13] += l i n e [ i ]

f o r f l d in f i e l d s :
p r i n t ( f l d , end= ’ ’)
f o r i in range (1 , 8 ) :

p r i n t (” CT{} ({} ,{} ) ” . format ( i , min maxs [ f l d ] [ i ] [ 0 ] , min maxs [ f l d ] [ i ] [ 1 ] ) , end= ’ ’)
p r i n t ( )

f o r i in range (1 , 8 ) :
p r i n t (”Cover Type { } : ” . format ( i ) , end=””)
f o r y in range (1 ,41 ) :

i f c ove r type s [ i ] [ y ] > 0 :
p r i n t (” ST{}” . format (y ) , end=””)

p r i n t ( )
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